mirror of https://github.com/ArduPilot/ardupilot
uncrustify libraries/AP_ADC/AP_ADC_ADS7844.cpp
This commit is contained in:
parent
7bfe32fd3d
commit
dcf4a9824d
|
@ -1,65 +1,65 @@
|
|||
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega
|
||||
Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
|
||||
|
||||
Modified by John Ihlein 6 / 19 / 2010 to:
|
||||
1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably
|
||||
only an issue on initial read of ADC at program start.
|
||||
2)Reorder analog read order as follows:
|
||||
p, q, r, ax, ay, az
|
||||
|
||||
This library is free software; you can redistribute it and / or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
External ADC ADS7844 is connected via Serial port 2 (in SPI mode)
|
||||
TXD2 = MOSI = pin PH1
|
||||
RXD2 = MISO = pin PH0
|
||||
XCK2 = SCK = pin PH2
|
||||
Chip Select pin is PC4 (33) [PH6 (9)]
|
||||
We are using the 16 clocks per conversion timming to increase efficiency (fast)
|
||||
|
||||
The sampling frequency is 1kHz (Timer2 overflow interrupt)
|
||||
|
||||
So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
|
||||
we have an 10x oversampling and averaging.
|
||||
|
||||
Methods:
|
||||
Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
|
||||
Ch(ch_num) : Return the ADC channel value
|
||||
|
||||
// HJI - Input definitions. USB connector assumed to be on the left, Rx and servo
|
||||
// connector pins to the rear. IMU shield components facing up. These are board
|
||||
// referenced sensor inputs, not device referenced.
|
||||
On Ardupilot Mega Hardware, oriented as described above:
|
||||
Chennel 0 : yaw rate, r
|
||||
Channel 1 : roll rate, p
|
||||
Channel 2 : pitch rate, q
|
||||
Channel 3 : x / y gyro temperature
|
||||
Channel 4 : x acceleration, aX
|
||||
Channel 5 : y acceleration, aY
|
||||
Channel 6 : z acceleration, aZ
|
||||
Channel 7 : Differential pressure sensor port
|
||||
|
||||
*/
|
||||
* AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega
|
||||
* Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
|
||||
*
|
||||
* Modified by John Ihlein 6 / 19 / 2010 to:
|
||||
* 1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably
|
||||
* only an issue on initial read of ADC at program start.
|
||||
* 2)Reorder analog read order as follows:
|
||||
* p, q, r, ax, ay, az
|
||||
*
|
||||
* This library is free software; you can redistribute it and / or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* External ADC ADS7844 is connected via Serial port 2 (in SPI mode)
|
||||
* TXD2 = MOSI = pin PH1
|
||||
* RXD2 = MISO = pin PH0
|
||||
* XCK2 = SCK = pin PH2
|
||||
* Chip Select pin is PC4 (33) [PH6 (9)]
|
||||
* We are using the 16 clocks per conversion timming to increase efficiency (fast)
|
||||
*
|
||||
* The sampling frequency is 1kHz (Timer2 overflow interrupt)
|
||||
*
|
||||
* So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
|
||||
* we have an 10x oversampling and averaging.
|
||||
*
|
||||
* Methods:
|
||||
* Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
|
||||
* Ch(ch_num) : Return the ADC channel value
|
||||
*
|
||||
* // HJI - Input definitions. USB connector assumed to be on the left, Rx and servo
|
||||
* // connector pins to the rear. IMU shield components facing up. These are board
|
||||
* // referenced sensor inputs, not device referenced.
|
||||
* On Ardupilot Mega Hardware, oriented as described above:
|
||||
* Chennel 0 : yaw rate, r
|
||||
* Channel 1 : roll rate, p
|
||||
* Channel 2 : pitch rate, q
|
||||
* Channel 3 : x / y gyro temperature
|
||||
* Channel 4 : x acceleration, aX
|
||||
* Channel 5 : y acceleration, aY
|
||||
* Channel 6 : z acceleration, aZ
|
||||
* Channel 7 : Differential pressure sensor port
|
||||
*
|
||||
*/
|
||||
#include "AP_ADC_ADS7844.h"
|
||||
|
||||
extern "C" {
|
||||
// AVR LibC Includes
|
||||
#include <inttypes.h>
|
||||
#include <stdint.h>
|
||||
#include <avr/interrupt.h>
|
||||
// AVR LibC Includes
|
||||
#include <inttypes.h>
|
||||
#include <stdint.h>
|
||||
#include <avr/interrupt.h>
|
||||
}
|
||||
#if defined(ARDUINO) && ARDUINO >= 100
|
||||
#include "Arduino.h"
|
||||
#include "Arduino.h"
|
||||
#else
|
||||
#include "WConstants.h"
|
||||
#include "WConstants.h"
|
||||
#endif
|
||||
|
||||
// Commands for reading ADC channels on ADS7844
|
||||
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
|
||||
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
|
||||
|
||||
// the sum of the values since last read
|
||||
static volatile uint32_t _sum[8];
|
||||
|
@ -79,48 +79,48 @@ static uint32_t last_ch6_micros;
|
|||
|
||||
static inline unsigned char ADC_SPI_transfer(unsigned char data)
|
||||
{
|
||||
/* Put data into buffer, sends the data */
|
||||
UDR2 = data;
|
||||
/* Wait for data to be received */
|
||||
while ( !(UCSR2A & (1 << RXC2)) );
|
||||
/* Get and return received data from buffer */
|
||||
return UDR2;
|
||||
/* Put data into buffer, sends the data */
|
||||
UDR2 = data;
|
||||
/* Wait for data to be received */
|
||||
while ( !(UCSR2A & (1 << RXC2)) ) ;
|
||||
/* Get and return received data from buffer */
|
||||
return UDR2;
|
||||
}
|
||||
|
||||
|
||||
void AP_ADC_ADS7844::read(uint32_t tnow)
|
||||
{
|
||||
uint8_t ch;
|
||||
uint8_t ch;
|
||||
|
||||
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
|
||||
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
|
||||
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
|
||||
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
|
||||
|
||||
for (ch = 0; ch < 8; ch++) {
|
||||
uint16_t v;
|
||||
for (ch = 0; ch < 8; ch++) {
|
||||
uint16_t v;
|
||||
|
||||
v = ADC_SPI_transfer(0) << 8; // Read first byte
|
||||
v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
|
||||
v = ADC_SPI_transfer(0) << 8; // Read first byte
|
||||
v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
|
||||
|
||||
if (v & 0x8007) {
|
||||
// this is a 12-bit ADC, shifted by 3 bits.
|
||||
// if we get other bits set then the value is
|
||||
// bogus and should be ignored
|
||||
continue;
|
||||
}
|
||||
if (v & 0x8007) {
|
||||
// this is a 12-bit ADC, shifted by 3 bits.
|
||||
// if we get other bits set then the value is
|
||||
// bogus and should be ignored
|
||||
continue;
|
||||
}
|
||||
|
||||
if (++_count[ch] == 0) {
|
||||
// overflow ... shouldn't happen too often
|
||||
// unless we're just not using the
|
||||
// channel. Notice that we overflow the count
|
||||
// to 1 here, not zero, as otherwise the
|
||||
// reader below could get a division by zero
|
||||
_sum[ch] = 0;
|
||||
_count[ch] = 1;
|
||||
}
|
||||
_sum[ch] += (v >> 3);
|
||||
}
|
||||
if (++_count[ch] == 0) {
|
||||
// overflow ... shouldn't happen too often
|
||||
// unless we're just not using the
|
||||
// channel. Notice that we overflow the count
|
||||
// to 1 here, not zero, as otherwise the
|
||||
// reader below could get a division by zero
|
||||
_sum[ch] = 0;
|
||||
_count[ch] = 1;
|
||||
}
|
||||
_sum[ch] += (v >> 3);
|
||||
}
|
||||
|
||||
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
|
||||
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
|
||||
|
||||
}
|
||||
|
||||
|
@ -134,31 +134,31 @@ AP_ADC_ADS7844::AP_ADC_ADS7844()
|
|||
void AP_ADC_ADS7844::Init( AP_PeriodicProcess * scheduler )
|
||||
{
|
||||
scheduler->suspend_timer();
|
||||
pinMode(ADC_CHIP_SELECT, OUTPUT);
|
||||
pinMode(ADC_CHIP_SELECT, OUTPUT);
|
||||
|
||||
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
|
||||
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
|
||||
|
||||
// Setup Serial Port2 in SPI mode
|
||||
UBRR2 = 0;
|
||||
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
|
||||
// Set MSPI mode of operation and SPI data mode 0.
|
||||
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
|
||||
// Enable receiver and transmitter.
|
||||
UCSR2B = (1 << RXEN2) | (1 << TXEN2);
|
||||
// Set Baud rate
|
||||
UBRR2 = 2; // SPI clock running at 2.6MHz
|
||||
// Setup Serial Port2 in SPI mode
|
||||
UBRR2 = 0;
|
||||
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
|
||||
// Set MSPI mode of operation and SPI data mode 0.
|
||||
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
|
||||
// Enable receiver and transmitter.
|
||||
UCSR2B = (1 << RXEN2) | (1 << TXEN2);
|
||||
// Set Baud rate
|
||||
UBRR2 = 2; // SPI clock running at 2.6MHz
|
||||
|
||||
// get an initial value for each channel. This ensures
|
||||
// _count[] is never zero
|
||||
for (uint8_t i=0; i<8; i++) {
|
||||
uint16_t adc_tmp;
|
||||
adc_tmp = ADC_SPI_transfer(0) << 8;
|
||||
adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]);
|
||||
_count[i] = 1;
|
||||
_sum[i] = adc_tmp;
|
||||
}
|
||||
// get an initial value for each channel. This ensures
|
||||
// _count[] is never zero
|
||||
for (uint8_t i=0; i<8; i++) {
|
||||
uint16_t adc_tmp;
|
||||
adc_tmp = ADC_SPI_transfer(0) << 8;
|
||||
adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]);
|
||||
_count[i] = 1;
|
||||
_sum[i] = adc_tmp;
|
||||
}
|
||||
|
||||
last_ch6_micros = micros();
|
||||
last_ch6_micros = micros();
|
||||
|
||||
scheduler->resume_timer();
|
||||
scheduler->register_process( AP_ADC_ADS7844::read );
|
||||
|
@ -168,33 +168,33 @@ void AP_ADC_ADS7844::Init( AP_PeriodicProcess * scheduler )
|
|||
// Read one channel value
|
||||
float AP_ADC_ADS7844::Ch(uint8_t ch_num)
|
||||
{
|
||||
uint16_t count;
|
||||
uint32_t sum;
|
||||
uint16_t count;
|
||||
uint32_t sum;
|
||||
|
||||
// ensure we have at least one value
|
||||
while (_count[ch_num] == 0) /* noop */ ;
|
||||
// ensure we have at least one value
|
||||
while (_count[ch_num] == 0) /* noop */;
|
||||
|
||||
// grab the value with interrupts disabled, and clear the count
|
||||
cli();
|
||||
count = _count[ch_num];
|
||||
sum = _sum[ch_num];
|
||||
_count[ch_num] = 0;
|
||||
_sum[ch_num] = 0;
|
||||
sei();
|
||||
// grab the value with interrupts disabled, and clear the count
|
||||
cli();
|
||||
count = _count[ch_num];
|
||||
sum = _sum[ch_num];
|
||||
_count[ch_num] = 0;
|
||||
_sum[ch_num] = 0;
|
||||
sei();
|
||||
|
||||
return ((float)sum)/count;
|
||||
return ((float)sum)/count;
|
||||
}
|
||||
|
||||
// see if Ch6() can return new data
|
||||
bool AP_ADC_ADS7844::new_data_available(const uint8_t *channel_numbers)
|
||||
{
|
||||
uint8_t i;
|
||||
uint8_t i;
|
||||
|
||||
for (i=0; i<6; i++) {
|
||||
if (_count[channel_numbers[i]] == 0) {
|
||||
for (i=0; i<6; i++) {
|
||||
if (_count[channel_numbers[i]] == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -206,36 +206,36 @@ bool AP_ADC_ADS7844::new_data_available(const uint8_t *channel_numbers)
|
|||
// then you will get very strange results
|
||||
uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, float *result)
|
||||
{
|
||||
uint16_t count[6];
|
||||
uint32_t sum[6];
|
||||
uint8_t i;
|
||||
uint16_t count[6];
|
||||
uint32_t sum[6];
|
||||
uint8_t i;
|
||||
|
||||
// ensure we have at least one value
|
||||
for (i=0; i<6; i++) {
|
||||
while (_count[channel_numbers[i]] == 0) /* noop */;
|
||||
}
|
||||
// ensure we have at least one value
|
||||
for (i=0; i<6; i++) {
|
||||
while (_count[channel_numbers[i]] == 0) /* noop */;
|
||||
}
|
||||
|
||||
// grab the values with interrupts disabled, and clear the counts
|
||||
cli();
|
||||
for (i=0; i<6; i++) {
|
||||
count[i] = _count[channel_numbers[i]];
|
||||
sum[i] = _sum[channel_numbers[i]];
|
||||
_count[channel_numbers[i]] = 0;
|
||||
_sum[channel_numbers[i]] = 0;
|
||||
}
|
||||
sei();
|
||||
// grab the values with interrupts disabled, and clear the counts
|
||||
cli();
|
||||
for (i=0; i<6; i++) {
|
||||
count[i] = _count[channel_numbers[i]];
|
||||
sum[i] = _sum[channel_numbers[i]];
|
||||
_count[channel_numbers[i]] = 0;
|
||||
_sum[channel_numbers[i]] = 0;
|
||||
}
|
||||
sei();
|
||||
|
||||
// calculate averages. We keep this out of the cli region
|
||||
// to prevent us stalling the ISR while doing the
|
||||
// division. That costs us 36 bytes of stack, but I think its
|
||||
// worth it.
|
||||
for (i = 0; i < 6; i++) {
|
||||
result[i] = sum[i] / (float)count[i];
|
||||
}
|
||||
// calculate averages. We keep this out of the cli region
|
||||
// to prevent us stalling the ISR while doing the
|
||||
// division. That costs us 36 bytes of stack, but I think its
|
||||
// worth it.
|
||||
for (i = 0; i < 6; i++) {
|
||||
result[i] = sum[i] / (float)count[i];
|
||||
}
|
||||
|
||||
// return number of microseconds since last call
|
||||
uint32_t us = micros();
|
||||
uint32_t ret = us - last_ch6_micros;
|
||||
last_ch6_micros = us;
|
||||
return ret;
|
||||
// return number of microseconds since last call
|
||||
uint32_t us = micros();
|
||||
uint32_t ret = us - last_ch6_micros;
|
||||
last_ch6_micros = us;
|
||||
return ret;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue