mirror of https://github.com/ArduPilot/ardupilot
AP_Math: move closest_point to cpp
This commit is contained in:
parent
bfc28dfde9
commit
dbf337e1b3
|
@ -300,6 +300,35 @@ Vector2<T> Vector2<T>::perpendicular(const Vector2<T> &pos_delta, const Vector2<
|
|||
return perpendicular2;
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the point closest to p on the line segment (v,w).
|
||||
*
|
||||
* Comments and implementation taken from
|
||||
* http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
|
||||
*/
|
||||
template <typename T>
|
||||
Vector2<T> Vector2<T>::closest_point(const Vector2<T> &p, const Vector2<T> &v, const Vector2<T> &w)
|
||||
{
|
||||
// length squared of line segment
|
||||
const float l2 = (v - w).length_squared();
|
||||
if (l2 < FLT_EPSILON) {
|
||||
// v == w case
|
||||
return v;
|
||||
}
|
||||
// Consider the line extending the segment, parameterized as v + t (w - v).
|
||||
// We find projection of point p onto the line.
|
||||
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
|
||||
// We clamp t from [0,1] to handle points outside the segment vw.
|
||||
const float t = ((p - v) * (w - v)) / l2;
|
||||
if (t <= 0) {
|
||||
return v;
|
||||
} else if (t >= 1) {
|
||||
return w;
|
||||
} else {
|
||||
return v + (w - v)*t;
|
||||
}
|
||||
}
|
||||
|
||||
// only define for float
|
||||
template float Vector2<float>::length_squared(void) const;
|
||||
template float Vector2<float>::length(void) const;
|
||||
|
@ -324,6 +353,7 @@ template float Vector2<float>::angle(const Vector2<float> &v) const;
|
|||
template float Vector2<float>::angle(void) const;
|
||||
template bool Vector2<float>::segment_intersection(const Vector2<float>& seg1_start, const Vector2<float>& seg1_end, const Vector2<float>& seg2_start, const Vector2<float>& seg2_end, Vector2<float>& intersection);
|
||||
template bool Vector2<float>::circle_segment_intersection(const Vector2<float>& seg_start, const Vector2<float>& seg_end, const Vector2<float>& circle_center, float radius, Vector2<float>& intersection);
|
||||
template Vector2<float> Vector2<float>::closest_point(const Vector2<float> &p, const Vector2<float> &v, const Vector2<float> &w);
|
||||
|
||||
template bool Vector2<long>::operator ==(const Vector2<long> &v) const;
|
||||
|
||||
|
|
|
@ -161,27 +161,7 @@ struct Vector2
|
|||
* Comments and implementation taken from
|
||||
* http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
|
||||
*/
|
||||
static Vector2<T> closest_point(const Vector2<T> &p, const Vector2<T> &v, const Vector2<T> &w)
|
||||
{
|
||||
// length squared of line segment
|
||||
const float l2 = (v - w).length_squared();
|
||||
if (l2 < FLT_EPSILON) {
|
||||
// v == w case
|
||||
return v;
|
||||
}
|
||||
// Consider the line extending the segment, parameterized as v + t (w - v).
|
||||
// We find projection of point p onto the line.
|
||||
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
|
||||
// We clamp t from [0,1] to handle points outside the segment vw.
|
||||
const float t = ((p - v) * (w - v)) / l2;
|
||||
if (t <= 0) {
|
||||
return v;
|
||||
} else if (t >= 1) {
|
||||
return w;
|
||||
} else {
|
||||
return v + (w - v)*t;
|
||||
}
|
||||
}
|
||||
static Vector2<T> closest_point(const Vector2<T> &p, const Vector2<T> &v, const Vector2<T> &w);
|
||||
|
||||
// w defines a line segment from the origin
|
||||
// p is a point
|
||||
|
|
Loading…
Reference in New Issue