AP_InertialSensor: converted MPU9150 driver

untested conversion
This commit is contained in:
Andrew Tridgell 2014-10-16 12:03:28 +11:00
parent ff5f791343
commit dbcd02f2be
3 changed files with 88 additions and 136 deletions

View File

@ -278,6 +278,7 @@ private:
#include "AP_InertialSensor_MPU9250.h" #include "AP_InertialSensor_MPU9250.h"
#include "AP_InertialSensor_L3G4200D.h" #include "AP_InertialSensor_L3G4200D.h"
#include "AP_InertialSensor_Flymaple.h" #include "AP_InertialSensor_Flymaple.h"
#include "AP_InertialSensor_MPU9150.h"
#include "AP_InertialSensor_HIL.h" #include "AP_InertialSensor_HIL.h"
#include "AP_InertialSensor_UserInteract_Stream.h" #include "AP_InertialSensor_UserInteract_Stream.h"
#include "AP_InertialSensor_UserInteract_MAVLink.h" #include "AP_InertialSensor_UserInteract_MAVLink.h"

View File

@ -19,6 +19,10 @@
Please check the following links for datasheets and documentation: Please check the following links for datasheets and documentation:
- http://www.invensense.com/mems/gyro/documents/PS-MPU-9150A-00v4_3.pdf - http://www.invensense.com/mems/gyro/documents/PS-MPU-9150A-00v4_3.pdf
- http://www.invensense.com/mems/gyro/documents/RM-MPU-9150A-00v4_2.pdf - http://www.invensense.com/mems/gyro/documents/RM-MPU-9150A-00v4_2.pdf
Note that this is an experimental driver. It is not used by any
actively maintained board and should be considered untested and
unmaintained
*/ */
#include <AP_HAL.h> #include <AP_HAL.h>
@ -320,19 +324,34 @@ static struct gyro_state_s st = {
/** /**
* @brief Constructor * @brief Constructor
*/ */
AP_InertialSensor_MPU9150::AP_InertialSensor_MPU9150() : AP_InertialSensor_MPU9150::AP_InertialSensor_MPU9150(AP_InertialSensor &imu) :
AP_InertialSensor(), AP_InertialSensor_Backend(imu),
_have_sample_available(false),
_accel_filter_x(800, 10), _accel_filter_x(800, 10),
_accel_filter_y(800, 10), _accel_filter_y(800, 10),
_accel_filter_z(800, 10), _accel_filter_z(800, 10),
_gyro_filter_x(800, 10), _gyro_filter_x(800, 10),
_gyro_filter_y(800, 10), _gyro_filter_y(800, 10),
_gyro_filter_z(800, 10) _gyro_filter_z(800, 10)
// _mag_filter_x(800, 10),
// _mag_filter_y(800, 10),
// _mag_filter_z(800, 10)
{ {
}
/*
detect the sensor
*/
AP_InertialSensor_Backend *AP_InertialSensor_MPU9150::detect(AP_InertialSensor &_imu,
AP_InertialSensor::Sample_rate sample_rate)
{
AP_InertialSensor_MPU9150 *sensor = new AP_InertialSensor_MPU9150(_imu);
if (sensor == NULL) {
return NULL;
}
if (!sensor->_init_sensor(sample_rate)) {
delete sensor;
return NULL;
}
return sensor;
} }
/* /*
@ -356,29 +375,26 @@ void AP_InertialSensor_MPU9150::_set_filter_frequency(uint8_t filter_hz)
* @param[in] Sample_rate The sample rate, check the struct def. * @param[in] Sample_rate The sample rate, check the struct def.
* @return AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE if successful. * @return AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE if successful.
*/ */
uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate ) bool AP_InertialSensor_MPU9150::_init_sensor(AP_InertialSensor::Sample_rate sample_rate)
{ {
// Sensors pushed to the FIFO. // Sensors pushed to the FIFO.
uint8_t sensors; uint8_t sensors;
switch (sample_rate) { switch (sample_rate) {
case RATE_50HZ: case AP_InertialSensor::RATE_50HZ:
_default_filter_hz = 10; _default_filter_hz = 10;
_sample_period_usec = (1000*1000) / 50;
break; break;
case RATE_100HZ: case AP_InertialSensor::RATE_100HZ:
_default_filter_hz = 20; _default_filter_hz = 20;
_sample_period_usec = (1000*1000) / 100;
break; break;
case RATE_200HZ: case AP_InertialSensor::RATE_200HZ:
_default_filter_hz = 20;
break;
case AP_InertialSensor::RATE_400HZ:
_default_filter_hz = 20; _default_filter_hz = 20;
_sample_period_usec = 5000;
break; break;
case RATE_400HZ:
default: default:
_default_filter_hz = 20; return false;
_sample_period_usec = 2500;
break;
} }
// get pointer to i2c bus semaphore // get pointer to i2c bus semaphore
@ -386,7 +402,7 @@ uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
// take i2c bus sempahore // take i2c bus sempahore
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)){ if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)){
return -1; return false;
} }
// Init the sensor // Init the sensor
@ -405,7 +421,7 @@ uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
// This registers are not documented in the register map. // This registers are not documented in the register map.
uint8_t buff[6]; uint8_t buff[6];
if (hal.i2c->readRegisters(st.hw->addr, st.reg->accel_offs, 6, buff) != 0) { if (hal.i2c->readRegisters(st.hw->addr, st.reg->accel_offs, 6, buff) != 0) {
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: couldn't read the registers to determine revision")); hal.console->printf("AP_InertialSensor_MPU9150: couldn't read the registers to determine revision");
goto failed; goto failed;
} }
uint8_t rev; uint8_t rev;
@ -432,28 +448,28 @@ uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
// Set gyro full-scale range [250, 500, 1000, 2000] // Set gyro full-scale range [250, 500, 1000, 2000]
if (mpu_set_gyro_fsr(2000)){ if (mpu_set_gyro_fsr(2000)){
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_set_gyro_fsr.\n")); hal.console->printf("AP_InertialSensor_MPU9150: mpu_set_gyro_fsr.\n");
goto failed; goto failed;
} }
// Set the accel full-scale range // Set the accel full-scale range
if (mpu_set_accel_fsr(2)){ if (mpu_set_accel_fsr(2)){
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_set_accel_fsr.\n")); hal.console->printf("AP_InertialSensor_MPU9150: mpu_set_accel_fsr.\n");
goto failed; goto failed;
} }
// Set digital low pass filter (using _default_filter_hz, 20 for 100 Hz of sample rate) // Set digital low pass filter (using _default_filter_hz, 20 for 100 Hz of sample rate)
if (mpu_set_lpf(_default_filter_hz)){ if (mpu_set_lpf(_default_filter_hz)){
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_set_lpf.\n")); hal.console->printf("AP_InertialSensor_MPU9150: mpu_set_lpf.\n");
goto failed; goto failed;
} }
// Set sampling rate (value must be between 4Hz and 1KHz) // Set sampling rate (value must be between 4Hz and 1KHz)
if (mpu_set_sample_rate(800)){ if (mpu_set_sample_rate(800)){
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_set_sample_rate.\n")); hal.console->printf("AP_InertialSensor_MPU9150: mpu_set_sample_rate.\n");
goto failed; goto failed;
} }
// Select which sensors are pushed to FIFO. // Select which sensors are pushed to FIFO.
sensors = INV_XYZ_ACCEL| INV_XYZ_GYRO; sensors = INV_XYZ_ACCEL| INV_XYZ_GYRO;
if (mpu_configure_fifo(sensors)){ if (mpu_configure_fifo(sensors)){
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_configure_fifo.\n")); hal.console->printf("AP_InertialSensor_MPU9150: mpu_configure_fifo.\n");
goto failed; goto failed;
} }
@ -467,18 +483,23 @@ uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
mpu_set_sensors(sensors); mpu_set_sensors(sensors);
// Set the filter frecuency (_mpu6000_filter configured to the default value, check AP_InertialSensor.cpp) // Set the filter frecuency (_mpu6000_filter configured to the default value, check AP_InertialSensor.cpp)
_set_filter_frequency(_mpu6000_filter); _set_filter_frequency(_imu.get_filter());
// give back i2c semaphore // give back i2c semaphore
i2c_sem->give(); i2c_sem->give();
_gyro_instance = _imu.register_gyro();
_accel_instance = _imu.register_accel();
// start the timer process to read samples // start the timer process to read samples
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_MPU9150::_accumulate)); hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_MPU9150::_accumulate));
return AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE;
failed: return true;
// give back i2c semaphore
i2c_sem->give(); failed:
return -1; // give back i2c semaphore
i2c_sem->give();
return false;
} }
/** /**
@ -1017,9 +1038,9 @@ int16_t AP_InertialSensor_MPU9150::mpu_read_fifo(int16_t *gyro, int16_t *accel,
* @brief Accumulate values from accels and gyros. * @brief Accumulate values from accels and gyros.
* *
* This method is called periodically by the scheduler. * This method is called periodically by the scheduler.
*
*/ */
void AP_InertialSensor_MPU9150::_accumulate(void){ void AP_InertialSensor_MPU9150::_accumulate(void)
{
// get pointer to i2c bus semaphore // get pointer to i2c bus semaphore
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore();
@ -1094,102 +1115,37 @@ void AP_InertialSensor_MPU9150::_accumulate(void){
_gyro_filter_y.apply(gyro_y), _gyro_filter_y.apply(gyro_y),
_gyro_filter_z.apply(gyro_z)); _gyro_filter_z.apply(gyro_z));
_gyro_samples_available++; _have_sample_available = true;
} }
// give back i2c semaphore // give back i2c semaphore
i2c_sem->give(); i2c_sem->give();
} }
bool AP_InertialSensor_MPU9150::_sample_available(void)
{
uint64_t tnow = hal.scheduler->micros();
while (tnow - _last_sample_timestamp > _sample_period_usec) {
_have_sample_available = true;
_last_sample_timestamp += _sample_period_usec;
}
return _have_sample_available;
}
bool AP_InertialSensor_MPU9150::wait_for_sample(uint16_t timeout_ms)
{
if (_sample_available()) {
return true;
}
uint32_t start = hal.scheduler->millis();
while ((hal.scheduler->millis() - start) < timeout_ms) {
uint64_t tnow = hal.scheduler->micros();
// we spin for the last timing_lag microseconds. Before that
// we yield the CPU to allow IO to happen
const uint16_t timing_lag = 400;
if (_last_sample_timestamp + _sample_period_usec > tnow+timing_lag) {
hal.scheduler->delay_microseconds(_last_sample_timestamp + _sample_period_usec - (tnow+timing_lag));
}
if (_sample_available()) {
return true;
}
}
return false;
}
bool AP_InertialSensor_MPU9150::update(void) bool AP_InertialSensor_MPU9150::update(void)
{ {
if (!wait_for_sample(1000)) { Vector3f accel, gyro;
return false; uint32_t now = hal.scheduler->micros();
}
Vector3f accel_scale = _accel_scale[0].get();
_previous_accel[0] = _accel[0];
// hal.scheduler->suspend_timer_procs();
_accel[0] = _accel_filtered;
_gyro[0] = _gyro_filtered;
// hal.scheduler->resume_timer_procs();
// add offsets and rotation
_accel[0].rotate(_board_orientation);
// Adjust for chip scaling to get m/s/s
////////////////////////////////////////////////
_accel[0] *= MPU9150_ACCEL_SCALE_2G/_gyro_samples_available;
// Now the calibration scale factor
_accel[0].x *= accel_scale.x;
_accel[0].y *= accel_scale.y;
_accel[0].z *= accel_scale.z;
_accel[0] -= _accel_offset[0];
_gyro[0].rotate(_board_orientation);
// Adjust for chip scaling to get radians/sec
_gyro[0] *= MPU9150_GYRO_SCALE_2000 / _gyro_samples_available;
_gyro[0] -= _gyro_offset[0];
////////////////////////////////////////////////
_gyro_samples_available = 0;
if (_last_filter_hz != _mpu6000_filter) {
_set_filter_frequency(_mpu6000_filter);
_last_filter_hz = _mpu6000_filter;
}
hal.scheduler->suspend_timer_procs();
accel = _accel_filtered;
gyro = _gyro_filtered;
_have_sample_available = false; _have_sample_available = false;
hal.scheduler->resume_timer_procs();
accel *= MPU9150_ACCEL_SCALE_2G;
_rotate_and_offset_accel(_accel_instance, accel, now);
gyro *= MPU9150_GYRO_SCALE_2000;
_rotate_and_offset_gyro(_gyro_instance, gyro, now);
if (_last_filter_hz != _imu.get_filter()) {
_set_filter_frequency(_imu.get_filter());
_last_filter_hz = _imu.get_filter();
}
return true; return true;
} }
// TODO review to make sure it matches
float AP_InertialSensor_MPU9150::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute (a guess)
return ToRad(0.5/60);
}
// TODO review to make sure it matches
float AP_InertialSensor_MPU9150::get_delta_time(void) const
{
return _sample_period_usec * 1.0e-6f;
}
#endif // CONFIG_HAL_BOARD #endif // CONFIG_HAL_BOARD

View File

@ -12,33 +12,31 @@
#include <LowPassFilter2p.h> #include <LowPassFilter2p.h>
class AP_InertialSensor_MPU9150 : public AP_InertialSensor class AP_InertialSensor_MPU9150 : public AP_InertialSensor_Backend
{ {
public: public:
AP_InertialSensor_MPU9150(AP_InertialSensor &imu);
AP_InertialSensor_MPU9150(); /* update accel and gyro state */
bool update();
/* Implementation of AP_InertialSensor functions: */ bool gyro_sample_available(void) { return _have_sample_available; }
bool update(); bool accel_sample_available(void) { return _have_sample_available; }
float get_delta_time() const;
float get_gyro_drift_rate(); // detect the sensor
bool wait_for_sample(uint16_t timeout_ms); static AP_InertialSensor_Backend *detect(AP_InertialSensor &imu,
AP_InertialSensor::Sample_rate sample_rate);
private: private:
uint16_t _init_sensor( Sample_rate sample_rate ); bool _init_sensor(AP_InertialSensor::Sample_rate sample_rate);
void _accumulate(void); void _accumulate(void);
bool _sample_available();
// uint64_t _last_update_usec;
Vector3f _accel_filtered; Vector3f _accel_filtered;
Vector3f _gyro_filtered; Vector3f _gyro_filtered;
uint32_t _sample_period_usec; bool _have_sample_available;
volatile uint32_t _gyro_samples_available;
uint64_t _last_sample_timestamp;
bool _have_sample_available;
// // support for updating filter at runtime // // support for updating filter at runtime
uint8_t _last_filter_hz; uint8_t _last_filter_hz;
uint8_t _default_filter_hz; uint8_t _default_filter_hz;
int16_t mpu_set_gyro_fsr(uint16_t fsr); int16_t mpu_set_gyro_fsr(uint16_t fsr);
int16_t mpu_set_accel_fsr(uint8_t fsr); int16_t mpu_set_accel_fsr(uint8_t fsr);
@ -52,7 +50,6 @@ private:
int16_t mpu_set_int_latched(uint8_t enable); int16_t mpu_set_int_latched(uint8_t enable);
int16_t mpu_read_fifo(int16_t *gyro, int16_t *accel, uint32_t timestamp, uint8_t *sensors, uint8_t *more); int16_t mpu_read_fifo(int16_t *gyro, int16_t *accel, uint32_t timestamp, uint8_t *sensors, uint8_t *more);
// Filter (specify which one)
void _set_filter_frequency(uint8_t filter_hz); void _set_filter_frequency(uint8_t filter_hz);
// Low Pass filters for gyro and accel // Low Pass filters for gyro and accel
@ -62,11 +59,9 @@ private:
LowPassFilter2p _gyro_filter_x; LowPassFilter2p _gyro_filter_x;
LowPassFilter2p _gyro_filter_y; LowPassFilter2p _gyro_filter_y;
LowPassFilter2p _gyro_filter_z; LowPassFilter2p _gyro_filter_z;
// LowPassFilter2p _mag_filter_x;
// LowPassFilter2p _mag_filter_y;
// LowPassFilter2p _mag_filter_z;
uint8_t _gyro_instance;
uint8_t _accel_instance;
}; };
#endif #endif
#endif // __AP_INERTIAL_SENSOR_MPU9150_H__ #endif // __AP_INERTIAL_SENSOR_MPU9150_H__