mirror of https://github.com/ArduPilot/ardupilot
AP_InertialSensor: converted MPU9150 driver
untested conversion
This commit is contained in:
parent
ff5f791343
commit
dbcd02f2be
|
@ -278,6 +278,7 @@ private:
|
|||
#include "AP_InertialSensor_MPU9250.h"
|
||||
#include "AP_InertialSensor_L3G4200D.h"
|
||||
#include "AP_InertialSensor_Flymaple.h"
|
||||
#include "AP_InertialSensor_MPU9150.h"
|
||||
#include "AP_InertialSensor_HIL.h"
|
||||
#include "AP_InertialSensor_UserInteract_Stream.h"
|
||||
#include "AP_InertialSensor_UserInteract_MAVLink.h"
|
||||
|
|
|
@ -19,6 +19,10 @@
|
|||
Please check the following links for datasheets and documentation:
|
||||
- http://www.invensense.com/mems/gyro/documents/PS-MPU-9150A-00v4_3.pdf
|
||||
- http://www.invensense.com/mems/gyro/documents/RM-MPU-9150A-00v4_2.pdf
|
||||
|
||||
Note that this is an experimental driver. It is not used by any
|
||||
actively maintained board and should be considered untested and
|
||||
unmaintained
|
||||
*/
|
||||
|
||||
#include <AP_HAL.h>
|
||||
|
@ -320,19 +324,34 @@ static struct gyro_state_s st = {
|
|||
/**
|
||||
* @brief Constructor
|
||||
*/
|
||||
AP_InertialSensor_MPU9150::AP_InertialSensor_MPU9150() :
|
||||
AP_InertialSensor(),
|
||||
AP_InertialSensor_MPU9150::AP_InertialSensor_MPU9150(AP_InertialSensor &imu) :
|
||||
AP_InertialSensor_Backend(imu),
|
||||
_have_sample_available(false),
|
||||
_accel_filter_x(800, 10),
|
||||
_accel_filter_y(800, 10),
|
||||
_accel_filter_z(800, 10),
|
||||
_gyro_filter_x(800, 10),
|
||||
_gyro_filter_y(800, 10),
|
||||
_gyro_filter_z(800, 10)
|
||||
// _mag_filter_x(800, 10),
|
||||
// _mag_filter_y(800, 10),
|
||||
// _mag_filter_z(800, 10)
|
||||
_gyro_filter_z(800, 10)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
detect the sensor
|
||||
*/
|
||||
AP_InertialSensor_Backend *AP_InertialSensor_MPU9150::detect(AP_InertialSensor &_imu,
|
||||
AP_InertialSensor::Sample_rate sample_rate)
|
||||
{
|
||||
AP_InertialSensor_MPU9150 *sensor = new AP_InertialSensor_MPU9150(_imu);
|
||||
if (sensor == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
if (!sensor->_init_sensor(sample_rate)) {
|
||||
delete sensor;
|
||||
return NULL;
|
||||
}
|
||||
return sensor;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -356,29 +375,26 @@ void AP_InertialSensor_MPU9150::_set_filter_frequency(uint8_t filter_hz)
|
|||
* @param[in] Sample_rate The sample rate, check the struct def.
|
||||
* @return AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE if successful.
|
||||
*/
|
||||
uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
|
||||
bool AP_InertialSensor_MPU9150::_init_sensor(AP_InertialSensor::Sample_rate sample_rate)
|
||||
{
|
||||
// Sensors pushed to the FIFO.
|
||||
uint8_t sensors;
|
||||
|
||||
switch (sample_rate) {
|
||||
case RATE_50HZ:
|
||||
case AP_InertialSensor::RATE_50HZ:
|
||||
_default_filter_hz = 10;
|
||||
_sample_period_usec = (1000*1000) / 50;
|
||||
break;
|
||||
case RATE_100HZ:
|
||||
case AP_InertialSensor::RATE_100HZ:
|
||||
_default_filter_hz = 20;
|
||||
_sample_period_usec = (1000*1000) / 100;
|
||||
break;
|
||||
case RATE_200HZ:
|
||||
case AP_InertialSensor::RATE_200HZ:
|
||||
_default_filter_hz = 20;
|
||||
break;
|
||||
case AP_InertialSensor::RATE_400HZ:
|
||||
_default_filter_hz = 20;
|
||||
_sample_period_usec = 5000;
|
||||
break;
|
||||
case RATE_400HZ:
|
||||
default:
|
||||
_default_filter_hz = 20;
|
||||
_sample_period_usec = 2500;
|
||||
break;
|
||||
return false;
|
||||
}
|
||||
|
||||
// get pointer to i2c bus semaphore
|
||||
|
@ -386,7 +402,7 @@ uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
|
|||
|
||||
// take i2c bus sempahore
|
||||
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)){
|
||||
return -1;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Init the sensor
|
||||
|
@ -405,8 +421,8 @@ uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
|
|||
// This registers are not documented in the register map.
|
||||
uint8_t buff[6];
|
||||
if (hal.i2c->readRegisters(st.hw->addr, st.reg->accel_offs, 6, buff) != 0) {
|
||||
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: couldn't read the registers to determine revision"));
|
||||
goto failed;
|
||||
hal.console->printf("AP_InertialSensor_MPU9150: couldn't read the registers to determine revision");
|
||||
goto failed;
|
||||
}
|
||||
uint8_t rev;
|
||||
rev = ((buff[5] & 0x01) << 2) | ((buff[3] & 0x01) << 1) |
|
||||
|
@ -432,28 +448,28 @@ uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
|
|||
|
||||
// Set gyro full-scale range [250, 500, 1000, 2000]
|
||||
if (mpu_set_gyro_fsr(2000)){
|
||||
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_set_gyro_fsr.\n"));
|
||||
hal.console->printf("AP_InertialSensor_MPU9150: mpu_set_gyro_fsr.\n");
|
||||
goto failed;
|
||||
}
|
||||
// Set the accel full-scale range
|
||||
if (mpu_set_accel_fsr(2)){
|
||||
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_set_accel_fsr.\n"));
|
||||
hal.console->printf("AP_InertialSensor_MPU9150: mpu_set_accel_fsr.\n");
|
||||
goto failed;
|
||||
}
|
||||
// Set digital low pass filter (using _default_filter_hz, 20 for 100 Hz of sample rate)
|
||||
if (mpu_set_lpf(_default_filter_hz)){
|
||||
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_set_lpf.\n"));
|
||||
hal.console->printf("AP_InertialSensor_MPU9150: mpu_set_lpf.\n");
|
||||
goto failed;
|
||||
}
|
||||
// Set sampling rate (value must be between 4Hz and 1KHz)
|
||||
if (mpu_set_sample_rate(800)){
|
||||
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_set_sample_rate.\n"));
|
||||
hal.console->printf("AP_InertialSensor_MPU9150: mpu_set_sample_rate.\n");
|
||||
goto failed;
|
||||
}
|
||||
// Select which sensors are pushed to FIFO.
|
||||
sensors = INV_XYZ_ACCEL| INV_XYZ_GYRO;
|
||||
if (mpu_configure_fifo(sensors)){
|
||||
hal.scheduler->panic(PSTR("AP_InertialSensor_MPU9150: mpu_configure_fifo.\n"));
|
||||
hal.console->printf("AP_InertialSensor_MPU9150: mpu_configure_fifo.\n");
|
||||
goto failed;
|
||||
}
|
||||
|
||||
|
@ -467,18 +483,23 @@ uint16_t AP_InertialSensor_MPU9150::_init_sensor( Sample_rate sample_rate )
|
|||
mpu_set_sensors(sensors);
|
||||
|
||||
// Set the filter frecuency (_mpu6000_filter configured to the default value, check AP_InertialSensor.cpp)
|
||||
_set_filter_frequency(_mpu6000_filter);
|
||||
_set_filter_frequency(_imu.get_filter());
|
||||
|
||||
// give back i2c semaphore
|
||||
i2c_sem->give();
|
||||
|
||||
_gyro_instance = _imu.register_gyro();
|
||||
_accel_instance = _imu.register_accel();
|
||||
|
||||
// start the timer process to read samples
|
||||
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_MPU9150::_accumulate));
|
||||
return AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE;
|
||||
|
||||
failed:
|
||||
// give back i2c semaphore
|
||||
i2c_sem->give();
|
||||
return -1;
|
||||
return true;
|
||||
|
||||
failed:
|
||||
// give back i2c semaphore
|
||||
i2c_sem->give();
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1017,9 +1038,9 @@ int16_t AP_InertialSensor_MPU9150::mpu_read_fifo(int16_t *gyro, int16_t *accel,
|
|||
* @brief Accumulate values from accels and gyros.
|
||||
*
|
||||
* This method is called periodically by the scheduler.
|
||||
*
|
||||
*/
|
||||
void AP_InertialSensor_MPU9150::_accumulate(void){
|
||||
void AP_InertialSensor_MPU9150::_accumulate(void)
|
||||
{
|
||||
// get pointer to i2c bus semaphore
|
||||
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore();
|
||||
|
||||
|
@ -1094,102 +1115,37 @@ void AP_InertialSensor_MPU9150::_accumulate(void){
|
|||
_gyro_filter_y.apply(gyro_y),
|
||||
_gyro_filter_z.apply(gyro_z));
|
||||
|
||||
_gyro_samples_available++;
|
||||
_have_sample_available = true;
|
||||
}
|
||||
|
||||
// give back i2c semaphore
|
||||
i2c_sem->give();
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_MPU9150::_sample_available(void)
|
||||
{
|
||||
uint64_t tnow = hal.scheduler->micros();
|
||||
while (tnow - _last_sample_timestamp > _sample_period_usec) {
|
||||
_have_sample_available = true;
|
||||
_last_sample_timestamp += _sample_period_usec;
|
||||
}
|
||||
return _have_sample_available;
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_MPU9150::wait_for_sample(uint16_t timeout_ms)
|
||||
{
|
||||
if (_sample_available()) {
|
||||
return true;
|
||||
}
|
||||
uint32_t start = hal.scheduler->millis();
|
||||
while ((hal.scheduler->millis() - start) < timeout_ms) {
|
||||
uint64_t tnow = hal.scheduler->micros();
|
||||
// we spin for the last timing_lag microseconds. Before that
|
||||
// we yield the CPU to allow IO to happen
|
||||
const uint16_t timing_lag = 400;
|
||||
if (_last_sample_timestamp + _sample_period_usec > tnow+timing_lag) {
|
||||
hal.scheduler->delay_microseconds(_last_sample_timestamp + _sample_period_usec - (tnow+timing_lag));
|
||||
}
|
||||
if (_sample_available()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_MPU9150::update(void)
|
||||
{
|
||||
if (!wait_for_sample(1000)) {
|
||||
return false;
|
||||
}
|
||||
Vector3f accel_scale = _accel_scale[0].get();
|
||||
|
||||
_previous_accel[0] = _accel[0];
|
||||
|
||||
// hal.scheduler->suspend_timer_procs();
|
||||
_accel[0] = _accel_filtered;
|
||||
_gyro[0] = _gyro_filtered;
|
||||
// hal.scheduler->resume_timer_procs();
|
||||
|
||||
// add offsets and rotation
|
||||
_accel[0].rotate(_board_orientation);
|
||||
|
||||
// Adjust for chip scaling to get m/s/s
|
||||
////////////////////////////////////////////////
|
||||
_accel[0] *= MPU9150_ACCEL_SCALE_2G/_gyro_samples_available;
|
||||
|
||||
// Now the calibration scale factor
|
||||
_accel[0].x *= accel_scale.x;
|
||||
_accel[0].y *= accel_scale.y;
|
||||
_accel[0].z *= accel_scale.z;
|
||||
_accel[0] -= _accel_offset[0];
|
||||
|
||||
_gyro[0].rotate(_board_orientation);
|
||||
|
||||
// Adjust for chip scaling to get radians/sec
|
||||
_gyro[0] *= MPU9150_GYRO_SCALE_2000 / _gyro_samples_available;
|
||||
_gyro[0] -= _gyro_offset[0];
|
||||
////////////////////////////////////////////////
|
||||
|
||||
_gyro_samples_available = 0;
|
||||
|
||||
if (_last_filter_hz != _mpu6000_filter) {
|
||||
_set_filter_frequency(_mpu6000_filter);
|
||||
_last_filter_hz = _mpu6000_filter;
|
||||
}
|
||||
Vector3f accel, gyro;
|
||||
uint32_t now = hal.scheduler->micros();
|
||||
|
||||
hal.scheduler->suspend_timer_procs();
|
||||
accel = _accel_filtered;
|
||||
gyro = _gyro_filtered;
|
||||
_have_sample_available = false;
|
||||
hal.scheduler->resume_timer_procs();
|
||||
|
||||
accel *= MPU9150_ACCEL_SCALE_2G;
|
||||
_rotate_and_offset_accel(_accel_instance, accel, now);
|
||||
|
||||
gyro *= MPU9150_GYRO_SCALE_2000;
|
||||
_rotate_and_offset_gyro(_gyro_instance, gyro, now);
|
||||
|
||||
if (_last_filter_hz != _imu.get_filter()) {
|
||||
_set_filter_frequency(_imu.get_filter());
|
||||
_last_filter_hz = _imu.get_filter();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// TODO review to make sure it matches
|
||||
float AP_InertialSensor_MPU9150::get_gyro_drift_rate(void)
|
||||
{
|
||||
// 0.5 degrees/second/minute (a guess)
|
||||
return ToRad(0.5/60);
|
||||
}
|
||||
|
||||
// TODO review to make sure it matches
|
||||
float AP_InertialSensor_MPU9150::get_delta_time(void) const
|
||||
{
|
||||
return _sample_period_usec * 1.0e-6f;
|
||||
}
|
||||
|
||||
|
||||
#endif // CONFIG_HAL_BOARD
|
||||
|
|
|
@ -12,33 +12,31 @@
|
|||
#include <LowPassFilter2p.h>
|
||||
|
||||
|
||||
class AP_InertialSensor_MPU9150 : public AP_InertialSensor
|
||||
class AP_InertialSensor_MPU9150 : public AP_InertialSensor_Backend
|
||||
{
|
||||
public:
|
||||
AP_InertialSensor_MPU9150(AP_InertialSensor &imu);
|
||||
|
||||
AP_InertialSensor_MPU9150();
|
||||
/* update accel and gyro state */
|
||||
bool update();
|
||||
|
||||
/* Implementation of AP_InertialSensor functions: */
|
||||
bool update();
|
||||
float get_delta_time() const;
|
||||
float get_gyro_drift_rate();
|
||||
bool wait_for_sample(uint16_t timeout_ms);
|
||||
bool gyro_sample_available(void) { return _have_sample_available; }
|
||||
bool accel_sample_available(void) { return _have_sample_available; }
|
||||
|
||||
// detect the sensor
|
||||
static AP_InertialSensor_Backend *detect(AP_InertialSensor &imu,
|
||||
AP_InertialSensor::Sample_rate sample_rate);
|
||||
|
||||
private:
|
||||
uint16_t _init_sensor( Sample_rate sample_rate );
|
||||
bool _init_sensor(AP_InertialSensor::Sample_rate sample_rate);
|
||||
void _accumulate(void);
|
||||
bool _sample_available();
|
||||
// uint64_t _last_update_usec;
|
||||
Vector3f _accel_filtered;
|
||||
Vector3f _gyro_filtered;
|
||||
uint32_t _sample_period_usec;
|
||||
volatile uint32_t _gyro_samples_available;
|
||||
uint64_t _last_sample_timestamp;
|
||||
bool _have_sample_available;
|
||||
bool _have_sample_available;
|
||||
|
||||
// // support for updating filter at runtime
|
||||
uint8_t _last_filter_hz;
|
||||
uint8_t _default_filter_hz;
|
||||
uint8_t _default_filter_hz;
|
||||
|
||||
int16_t mpu_set_gyro_fsr(uint16_t fsr);
|
||||
int16_t mpu_set_accel_fsr(uint8_t fsr);
|
||||
|
@ -52,7 +50,6 @@ private:
|
|||
int16_t mpu_set_int_latched(uint8_t enable);
|
||||
int16_t mpu_read_fifo(int16_t *gyro, int16_t *accel, uint32_t timestamp, uint8_t *sensors, uint8_t *more);
|
||||
|
||||
// Filter (specify which one)
|
||||
void _set_filter_frequency(uint8_t filter_hz);
|
||||
|
||||
// Low Pass filters for gyro and accel
|
||||
|
@ -62,11 +59,9 @@ private:
|
|||
LowPassFilter2p _gyro_filter_x;
|
||||
LowPassFilter2p _gyro_filter_y;
|
||||
LowPassFilter2p _gyro_filter_z;
|
||||
// LowPassFilter2p _mag_filter_x;
|
||||
// LowPassFilter2p _mag_filter_y;
|
||||
// LowPassFilter2p _mag_filter_z;
|
||||
|
||||
|
||||
uint8_t _gyro_instance;
|
||||
uint8_t _accel_instance;
|
||||
};
|
||||
#endif
|
||||
#endif // __AP_INERTIAL_SENSOR_MPU9150_H__
|
||||
|
|
Loading…
Reference in New Issue