mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-02-21 23:33:57 -04:00
Revert "AP_HAL_AVR: Improved AVRTimer micros() and millis()"
This reverts commit 527dcdf3b9
.
This was causing the MPU6000 startup code to fail, due to time running
backwards.
This commit is contained in:
parent
85d783d5a9
commit
db8da71f65
@ -64,7 +64,7 @@ void APM1RCInput::init(void* _isrregistry) {
|
||||
*/
|
||||
TCCR4A = _BV(WGM40) | _BV(WGM41);
|
||||
TCCR4B = _BV(WGM43) | _BV(WGM42) | _BV(CS41) | _BV(ICES4);
|
||||
OCR4A = 40000 - 1; // -1 to correct for wrap
|
||||
OCR4A = 40000;
|
||||
|
||||
/* OCR4B and OCR4C will be used by RCOutput_APM1. init to nil output */
|
||||
OCR4B = 0xFFFF;
|
||||
@ -72,9 +72,6 @@ void APM1RCInput::init(void* _isrregistry) {
|
||||
|
||||
/* Enable input capture interrupt */
|
||||
TIMSK4 |= _BV(ICIE4);
|
||||
|
||||
/* Enable overflow interrupt */
|
||||
TIMSK4 |= _BV(TOIE4);
|
||||
}
|
||||
|
||||
uint8_t APM1RCInput::valid() { return _valid; }
|
||||
|
@ -64,7 +64,7 @@ void APM2RCInput::init(void* _isrregistry) {
|
||||
*/
|
||||
TCCR5A = _BV(WGM50) | _BV(WGM51);
|
||||
TCCR5B = _BV(WGM53) | _BV(WGM52) | _BV(CS51) | _BV(ICES5);
|
||||
OCR5A = 40000 - 1; // -1 to correct for wrap
|
||||
OCR5A = 40000;
|
||||
|
||||
/* OCR5B and OCR5C will be used by RCOutput_APM2. init to nil output */
|
||||
OCR5B = 0xFFFF;
|
||||
@ -72,9 +72,6 @@ void APM2RCInput::init(void* _isrregistry) {
|
||||
|
||||
/* Enable input capture interrupt */
|
||||
TIMSK5 |= _BV(ICIE5);
|
||||
|
||||
/* Enable overflow interrupt */
|
||||
TIMSK5 |= _BV(TOIE5);
|
||||
}
|
||||
|
||||
uint8_t APM2RCInput::valid() { return _valid; }
|
||||
|
@ -10,13 +10,47 @@ using namespace AP_HAL_AVR;
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
|
||||
static volatile uint32_t timer_micros_counter = 0;
|
||||
static volatile uint32_t timer_millis_counter = 0;
|
||||
static volatile uint32_t timer0_overflow_count = 0;
|
||||
static volatile uint32_t timer0_millis = 0;
|
||||
static uint8_t timer0_fract = 0;
|
||||
|
||||
|
||||
void AVRTimer::init() {
|
||||
// this needs to be called before setup() or some functions won't
|
||||
// work there
|
||||
sei();
|
||||
|
||||
// set timer 0 prescale factor to 64
|
||||
// this combination is for the standard 168/328/1280/2560
|
||||
sbi(TCCR0B, CS01);
|
||||
sbi(TCCR0B, CS00);
|
||||
// enable timer 0 overflow interrupt
|
||||
sbi(TIMSK0, TOIE0);
|
||||
|
||||
// timers 1 and 2 are used for phase-correct hardware pwm
|
||||
// this is better for motors as it ensures an even waveform
|
||||
// note, however, that fast pwm mode can achieve a frequency of up
|
||||
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
|
||||
|
||||
TCCR1B = 0;
|
||||
|
||||
// set timer 1 prescale factor to 64
|
||||
sbi(TCCR1B, CS11);
|
||||
sbi(TCCR1B, CS10);
|
||||
// put timer 1 in 8-bit phase correct pwm mode
|
||||
sbi(TCCR1A, WGM10);
|
||||
|
||||
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
|
||||
sbi(TCCR3B, CS30);
|
||||
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
|
||||
|
||||
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
|
||||
sbi(TCCR4B, CS40);
|
||||
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
|
||||
|
||||
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
|
||||
sbi(TCCR5B, CS50);
|
||||
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
|
||||
|
||||
// set a2d prescale factor to 128
|
||||
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
||||
@ -35,41 +69,73 @@ void AVRTimer::init() {
|
||||
UCSR0B = 0;
|
||||
}
|
||||
|
||||
#if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 )
|
||||
#define AVR_TIMER_OVF_VECT TIMER4_OVF_vect
|
||||
#define AVR_TIMER_TCNT TCNT4
|
||||
#elif (CONFIG_HAL_BOARD == HAL_BOARD_APM2 )
|
||||
#define AVR_TIMER_OVF_VECT TIMER5_OVF_vect
|
||||
#define AVR_TIMER_TCNT TCNT5
|
||||
#endif
|
||||
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
|
||||
#define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) )
|
||||
|
||||
SIGNAL( AVR_TIMER_OVF_VECT)
|
||||
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
|
||||
// the overflow handler is called every 256 ticks.
|
||||
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
|
||||
|
||||
// the whole number of milliseconds per timer0 overflow
|
||||
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
|
||||
|
||||
// the fractional number of milliseconds per timer0 overflow. we shift right
|
||||
// by three to fit these numbers into a byte. (for the clock speeds we care
|
||||
// about - 8 and 16 MHz - this doesn't lose precision.)
|
||||
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
|
||||
#define FRACT_MAX (1000 >> 3)
|
||||
|
||||
|
||||
SIGNAL(TIMER0_OVF_vect)
|
||||
{
|
||||
// Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer overflow at 40000
|
||||
timer_micros_counter += 40000 / 2; // 20000us each overflow
|
||||
timer_millis_counter += 40000 / 2000; // 20ms each overlflow
|
||||
// copy these to local variables so they can be stored in registers
|
||||
// (volatile variables must be read from memory on every access)
|
||||
uint32_t m = timer0_millis;
|
||||
uint8_t f = timer0_fract;
|
||||
|
||||
m += MILLIS_INC;
|
||||
f += FRACT_INC;
|
||||
if (f >= FRACT_MAX) {
|
||||
f -= FRACT_MAX;
|
||||
m += 1;
|
||||
}
|
||||
|
||||
timer0_fract = f;
|
||||
timer0_millis = m;
|
||||
timer0_overflow_count++;
|
||||
}
|
||||
|
||||
uint32_t AVRTimer::millis()
|
||||
{
|
||||
uint32_t m;
|
||||
uint8_t oldSREG = SREG;
|
||||
|
||||
// disable interrupts while we read timer0_millis or we might get an
|
||||
// inconsistent value (e.g. in the middle of a write to timer0_millis)
|
||||
cli();
|
||||
m = timer0_millis;
|
||||
SREG = oldSREG;
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
uint32_t AVRTimer::micros() {
|
||||
uint8_t oldSREG = SREG;
|
||||
cli();
|
||||
// Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer
|
||||
//uint32_t time_micros = timer_micros_counter + (AVR_TIMER_TCNT / 2);
|
||||
uint32_t time_micros = timer_micros_counter + (AVR_TIMER_TCNT >> 1);
|
||||
SREG = oldSREG;
|
||||
return time_micros;
|
||||
}
|
||||
|
||||
uint32_t AVRTimer::millis() {
|
||||
uint32_t m;
|
||||
uint8_t t;
|
||||
|
||||
uint8_t oldSREG = SREG;
|
||||
cli();
|
||||
// Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer
|
||||
//uint32_t time_millis = timer_millis_counter + (AVR_TIMER_TCNT / 2000) ;
|
||||
uint32_t time_millis = timer_millis_counter + (AVR_TIMER_TCNT >> 11); // AVR_TIMER_CNT / 2048 is close enough (24us counter delay)
|
||||
SREG = oldSREG;
|
||||
return time_millis;
|
||||
}
|
||||
|
||||
m = timer0_overflow_count;
|
||||
t = TCNT0;
|
||||
|
||||
if ((TIFR0 & _BV(TOV0)) && (t < 255))
|
||||
m++;
|
||||
|
||||
SREG = oldSREG;
|
||||
|
||||
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
|
||||
}
|
||||
|
||||
/* Delay for the given number of microseconds. Assumes a 16 MHz clock. */
|
||||
void AVRTimer::delay_microseconds(uint16_t us)
|
||||
|
Loading…
Reference in New Issue
Block a user