AP_NavEKF2: fix writeOptFlowMeas signature

const some of the vectors, stop taking references to scalars that aren't
being changed
This commit is contained in:
Peter Barker 2018-09-02 21:25:07 +10:00 committed by Andrew Tridgell
parent 306a40bb77
commit d8aa8d2b71
4 changed files with 4 additions and 4 deletions

View File

@ -1082,7 +1082,7 @@ bool NavEKF2::use_compass(void) const
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate // The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor. // msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
// posOffset is the XYZ flow sensor position in the body frame in m // posOffset is the XYZ flow sensor position in the body frame in m
void NavEKF2::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset) void NavEKF2::writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset)
{ {
if (core) { if (core) {
for (uint8_t i=0; i<num_cores; i++) { for (uint8_t i=0; i<num_cores; i++) {

View File

@ -212,7 +212,7 @@ public:
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate // The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor. // msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
// posOffset is the XYZ flow sensor position in the body frame in m // posOffset is the XYZ flow sensor position in the body frame in m
void writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset); void writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset);
// return data for debugging optical flow fusion for the specified instance // return data for debugging optical flow fusion for the specified instance
// An out of range instance (eg -1) returns data for the the primary instance // An out of range instance (eg -1) returns data for the the primary instance

View File

@ -117,7 +117,7 @@ void NavEKF2_core::readRangeFinder(void)
// write the raw optical flow measurements // write the raw optical flow measurements
// this needs to be called externally. // this needs to be called externally.
void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset) void NavEKF2_core::writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset)
{ {
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update // The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions: // The PX4Flow sensor outputs flow rates with the following axis and sign conventions:

View File

@ -198,7 +198,7 @@ public:
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate // The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor. // msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
// posOffset is the XYZ flow sensor position in the body frame in m // posOffset is the XYZ flow sensor position in the body frame in m
void writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset); void writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset);
// return data for debugging optical flow fusion // return data for debugging optical flow fusion
void getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const; void getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const;