AC_AutoTune: fix heading error filter and streamline updating_rate_d_up

This commit is contained in:
Bill Geyer 2022-01-13 23:13:47 -05:00 committed by Bill Geyer
parent fb5fec387e
commit d72f142ebe
2 changed files with 22 additions and 117 deletions

View File

@ -135,9 +135,9 @@ void AC_AutoTune_Heli::test_init()
} else if (tune_type == MAX_GAINS || tune_type == RD_UP) { } else if (tune_type == MAX_GAINS || tune_type == RD_UP) {
start_freq = min_sweep_freq; start_freq = min_sweep_freq;
stop_freq = max_sweep_freq; stop_freq = max_sweep_freq;
method = 0; //reset the method for rate D and rate P tuning. method = 0; //reset the method for rate D tuning.
} else { } else {
test_freq[0] = 2.0f * 3.14159f * 2.0f; test_freq[0] = min_sweep_freq;
curr_test_freq = test_freq[0]; curr_test_freq = test_freq[0];
start_freq = curr_test_freq; start_freq = curr_test_freq;
stop_freq = curr_test_freq; stop_freq = curr_test_freq;
@ -889,7 +889,8 @@ void AC_AutoTune_Heli::dwell_test_init(float start_frq, float filt_freq)
filt_command_reading.set_cutoff_frequency(0.2f * start_frq); filt_command_reading.set_cutoff_frequency(0.2f * start_frq);
filt_gyro_reading.set_cutoff_frequency(0.2f * start_frq); filt_gyro_reading.set_cutoff_frequency(0.2f * start_frq);
filt_tgt_rate_reading.set_cutoff_frequency(0.2f * start_frq); filt_tgt_rate_reading.set_cutoff_frequency(0.2f * start_frq);
filt_attitude_cd.set_cutoff_frequency(0.2f * start_frq); filt_pit_roll_cd.set_cutoff_frequency(0.2f * start_frq);
filt_heading_error_cd.set_cutoff_frequency(0.2f * start_frq);
filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq); filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq);
// save the trim output from PID controller // save the trim output from PID controller
@ -957,7 +958,8 @@ void AC_AutoTune_Heli::dwell_test_run(uint8_t freq_resp_input, float start_frq,
dwell_freq = waveform_freq_rads; dwell_freq = waveform_freq_rads;
} }
} }
filt_attitude_cd.apply(attitude_cd, AP::scheduler().get_loop_period_s()); filt_pit_roll_cd.apply(Vector2f(attitude_cd.x,attitude_cd.y), AP::scheduler().get_loop_period_s());
filt_heading_error_cd.apply(wrap_180_cd(trim_attitude_cd.z - attitude_cd.z), AP::scheduler().get_loop_period_s());
Vector2f att_fdbk = Vector2f(-5730.0f * vel_hold_gain * velocity_bf.y, 5730.0f * vel_hold_gain * velocity_bf.x); Vector2f att_fdbk = Vector2f(-5730.0f * vel_hold_gain * velocity_bf.y, 5730.0f * vel_hold_gain * velocity_bf.x);
filt_att_fdbk_from_velxy_cd.apply(att_fdbk, AP::scheduler().get_loop_period_s()); filt_att_fdbk_from_velxy_cd.apply(att_fdbk, AP::scheduler().get_loop_period_s());
} else { } else {
@ -966,15 +968,16 @@ void AC_AutoTune_Heli::dwell_test_run(uint8_t freq_resp_input, float start_frq,
dwell_start_time_ms = now; dwell_start_time_ms = now;
trim_command = command_out; trim_command = command_out;
trim_attitude_cd = attitude_cd; trim_attitude_cd = attitude_cd;
filt_attitude_cd.reset(attitude_cd); filt_pit_roll_cd.reset(Vector2f(attitude_cd.x,attitude_cd.y));
filt_heading_error_cd.reset(0.0f);
filt_att_fdbk_from_velxy_cd.reset(Vector2f(0.0f,0.0f)); filt_att_fdbk_from_velxy_cd.reset(Vector2f(0.0f,0.0f));
} }
// limit rate correction for position hold // limit rate correction for position hold
Vector3f trim_rate_cds; Vector3f trim_rate_cds;
trim_rate_cds.x = att_hold_gain * ((trim_attitude_cd.x + filt_att_fdbk_from_velxy_cd.get().x) - filt_attitude_cd.get().x); trim_rate_cds.x = att_hold_gain * ((trim_attitude_cd.x + filt_att_fdbk_from_velxy_cd.get().x) - filt_pit_roll_cd.get().x);
trim_rate_cds.y = att_hold_gain * ((trim_attitude_cd.y + filt_att_fdbk_from_velxy_cd.get().y) - filt_attitude_cd.get().y); trim_rate_cds.y = att_hold_gain * ((trim_attitude_cd.y + filt_att_fdbk_from_velxy_cd.get().y) - filt_pit_roll_cd.get().y);
trim_rate_cds.z = att_hold_gain * wrap_180_cd(trim_attitude_cd.z - filt_attitude_cd.get().z); trim_rate_cds.z = att_hold_gain * filt_heading_error_cd.get();
trim_rate_cds.x = constrain_float(trim_rate_cds.x, -15000.0f, 15000.0f); trim_rate_cds.x = constrain_float(trim_rate_cds.x, -15000.0f, 15000.0f);
trim_rate_cds.y = constrain_float(trim_rate_cds.y, -15000.0f, 15000.0f); trim_rate_cds.y = constrain_float(trim_rate_cds.y, -15000.0f, 15000.0f);
trim_rate_cds.z = constrain_float(trim_rate_cds.z, -15000.0f, 15000.0f); trim_rate_cds.z = constrain_float(trim_rate_cds.z, -15000.0f, 15000.0f);
@ -1159,7 +1162,6 @@ void AC_AutoTune_Heli::angle_dwell_test_init(float start_frq, float filt_freq)
filt_command_reading.set_cutoff_frequency(0.2f * start_frq); filt_command_reading.set_cutoff_frequency(0.2f * start_frq);
filt_gyro_reading.set_cutoff_frequency(0.2f * start_frq); filt_gyro_reading.set_cutoff_frequency(0.2f * start_frq);
filt_tgt_rate_reading.set_cutoff_frequency(0.2f * start_frq); filt_tgt_rate_reading.set_cutoff_frequency(0.2f * start_frq);
filt_attitude_cd.set_cutoff_frequency(0.2f * start_frq);
filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq); filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq);
if (!is_equal(start_freq, stop_freq)) { if (!is_equal(start_freq, stop_freq)) {
@ -1623,32 +1625,23 @@ void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gai
// updating_rate_d_up - uses maximum allowable gain determined from max_gain test to determine rate d gain where the response gain is at a minimum // updating_rate_d_up - uses maximum allowable gain determined from max_gain test to determine rate d gain where the response gain is at a minimum
void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_d) void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_d)
{ {
float test_freq_incr = 0.25f * 3.14159f * 2.0f; float test_freq_incr = 0.25f * 3.14159f * 2.0f; // set for 1/4 hz increments
// frequency sweep was conducted. check to see if freq for 180 deg phase was determined and start there if it was
if (!is_equal(start_freq,stop_freq)) { if (!is_equal(start_freq,stop_freq)) {
if (!is_zero(sweep.ph180_freq)) {
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
frq_cnt = 12; frq_cnt = 12;
if (sweep.maxgain_freq > sweep.ph180_freq) {
// freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr;
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
freq_cnt_max = frq_cnt; freq_cnt_max = frq_cnt;
// method = 1;
method = 2;
} else if (!is_zero(sweep.ph180_freq)) {
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
// using 180 phase as max gain to start
freq_cnt_max = frq_cnt;
method = 2;
} else { } else {
freq[frq_cnt] = 4.0f * M_PI; frq_cnt = 1;
method = 0; freq[frq_cnt] = min_sweep_freq;
} }
curr_test_freq = freq[frq_cnt]; curr_test_freq = freq[frq_cnt];
} }
// if sweep failed to find frequency for 180 phase then use dwell to find frequency
if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) {
if (frq_cnt == 0) { if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
tune_d = max_gain_d.max_allowed * 0.25f;
freq_cnt_max = 0;
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
rd_prev_good_frq_cnt = frq_cnt; rd_prev_good_frq_cnt = frq_cnt;
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) { } else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
if (phase[frq_cnt] - 360.0f < 180.0f) { if (phase[frq_cnt] - 360.0f < 180.0f) {
@ -1661,12 +1654,11 @@ void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gai
if (frq_cnt == 12) { if (frq_cnt == 12) {
freq[frq_cnt] = freq[rd_prev_good_frq_cnt]; freq[frq_cnt] = freq[rd_prev_good_frq_cnt];
curr_test_freq = freq[frq_cnt]; curr_test_freq = freq[frq_cnt];
method = 2;
} else { } else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt]; curr_test_freq = freq[frq_cnt];
} }
} else if (is_equal(start_freq,stop_freq) && method == 2) { } else if (is_equal(start_freq,stop_freq)) {
if (is_zero(tune_d)) { if (is_zero(tune_d)) {
tune_d = 0.05f * max_gain_d.max_allowed; tune_d = 0.05f * max_gain_d.max_allowed;
rd_prev_gain = gain[frq_cnt]; rd_prev_gain = gain[frq_cnt];
@ -1690,22 +1682,6 @@ void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gai
tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed); tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed);
} }
} }
} else if (is_equal(start_freq,stop_freq) && method == 1) {
if (is_zero(tune_d)) {
tune_d = 0.05f * max_gain_d.max_allowed;
rd_prev_gain = gain[frq_cnt];
} else if ((gain[frq_cnt] < rd_prev_gain || is_zero(rd_prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) {
tune_d += 0.05f * max_gain_d.max_allowed;
rd_prev_gain = gain[frq_cnt];
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
rd_prev_gain = 0.0f;
tune_d -= 0.05f * max_gain_d.max_allowed;
tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed);
}
} }
if (counter == AUTOTUNE_SUCCESS_COUNT) { if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test start_freq = 0.0f; //initializes next test that uses dwell test
@ -1818,74 +1794,6 @@ void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *ga
} }
} }
// updating_angle_p_up_yaw - determines maximum angle p gain for yaw
void AC_AutoTune_Heli::updating_angle_p_up_yaw(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt)
{
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
if (frq_cnt < 12) {
if (frq_cnt == 0) {
freq_cnt_max = 0;
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
sp_prev_good_frq_cnt = frq_cnt;
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
if (phase[frq_cnt] - 360.0f < 180.0f) {
sp_prev_good_frq_cnt = frq_cnt;
}
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
frq_cnt = 11;
}
frq_cnt++;
if (frq_cnt == 12) {
freq[frq_cnt] = freq[sp_prev_good_frq_cnt];
curr_test_freq = freq[frq_cnt];
} else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt];
}
}
// once finished with sweep of frequencies, cnt = 12 is used to then tune for max response gain
if (freq_cnt >= 12) {
if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f && tune_p < AUTOTUNE_SP_MAX) {
tune_p += 0.5f;
if (tune_p >= AUTOTUNE_SP_MAX) {
tune_p = AUTOTUNE_SP_MAX;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
curr_test_freq = freq[0];
freq_cnt = 0;
}
} else if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] > 180.0f) {
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] < 160.0f) {
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
}
// guard against frequency getting too high or too low
if (curr_test_freq > 50.24f || curr_test_freq < 3.14f) {
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
curr_test_freq = freq[0];
freq_cnt = 0;
}
}
if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test
} else {
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
}
}
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur // updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur
void AC_AutoTune_Heli::updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d) void AC_AutoTune_Heli::updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d)
{ {

View File

@ -161,9 +161,6 @@ private:
// updating_angle_p_up - determines maximum angle p gain for pitch and roll // updating_angle_p_up - determines maximum angle p gain for pitch and roll
void updating_angle_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt); void updating_angle_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt);
// updating_angle_p_up_yaw - determines maximum angle p gain for yaw
void updating_angle_p_up_yaw(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt);
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur // updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur
void updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d); void updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d);
@ -235,7 +232,8 @@ private:
LowPassFilterFloat angle_request_cd; LowPassFilterFloat angle_request_cd;
// variables from dwell test // variables from dwell test
LowPassFilterVector3f filt_attitude_cd; LowPassFilterVector2f filt_pit_roll_cd; // filtered pitch and roll attitude for dwell rate method
LowPassFilterFloat filt_heading_error_cd; // filtered heading error for dwell rate method
LowPassFilterVector2f filt_att_fdbk_from_velxy_cd; LowPassFilterVector2f filt_att_fdbk_from_velxy_cd;
LowPassFilterFloat filt_command_reading; // filtered command reading to keep oscillation centered LowPassFilterFloat filt_command_reading; // filtered command reading to keep oscillation centered
LowPassFilterFloat filt_gyro_reading; // filtered gyro reading to keep oscillation centered LowPassFilterFloat filt_gyro_reading; // filtered gyro reading to keep oscillation centered
@ -277,5 +275,4 @@ private:
AC_AutoTune_FreqResp freqresp_rate; AC_AutoTune_FreqResp freqresp_rate;
// freqresp object for the angle frequency response tests // freqresp object for the angle frequency response tests
AC_AutoTune_FreqResp freqresp_angle; AC_AutoTune_FreqResp freqresp_angle;
}; };