New Stable mode implementation. Fixed yaw issue. GPS position hold update. Acrobatic mode update to use bias corrected gyro rates.

git-svn-id: https://arducopter.googlecode.com/svn/trunk@376 f9c3cf11-9bcb-44bc-f272-b75c42450872
This commit is contained in:
jjulio1234 2010-09-02 20:28:01 +00:00
parent e0be94a03f
commit d6fc9650a4
6 changed files with 237 additions and 195 deletions

View File

@ -51,7 +51,7 @@ uint8_t sensors[6] = {1, 2, 0, 4, 5, 6}; // For ArduPilot Mega Sensor Shield Ha
// Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ, MAGX, MAGY, MAGZ
int SENSOR_SIGN[]={
1, -1, 1, -1, 1, 1, -1, -1, -1};
1, -1, -1, -1, 1, 1, -1, -1, -1};
//{-1,1,-1,1,-1,1,-1,-1,-1};
/* APM Hardware definitions, END */
@ -139,13 +139,8 @@ float GPS_Dt=0.2; // GPS Dt
// Attitude control variables
float command_rx_roll=0; // User commands
float command_rx_roll_old;
float command_rx_roll_diff;
float command_rx_pitch=0;
float command_rx_pitch_old;
float command_rx_pitch_diff;
float command_rx_yaw=0;
float command_rx_yaw_diff;
int control_roll; // PID control results
int control_pitch;
int control_yaw;

View File

@ -49,7 +49,7 @@
/* User definable modules */
// Comment out with // modules that you are not using
//#define IsGPS // Do we have a GPS connected
#define IsGPS // Do we have a GPS connected
//#define IsNEWMTEK// Do we have MTEK with new firmware
#define IsMAG // Do we have a Magnetometer connected, if have remember to activate it from Configurator
//#define IsTEL // Do we have a telemetry connected, eg. XBee connected on Telemetry port
@ -87,8 +87,8 @@
#include <APM_BMP085.h>
#endif
//#include <GPS_NMEA.h> // General NMEA GPS
#include <GPS_MTK.h> // MediaTEK DIY Drones GPS.
#include <GPS_NMEA.h> // General NMEA GPS
//#include <GPS_MTK.h> // MediaTEK DIY Drones GPS.
//#include <GPS_UBLOX.h> // uBlox GPS
// EEPROM storage for user configurable values
@ -109,74 +109,64 @@
/* ************************************************************ */
// STABLE MODE
// ROLL, PITCH and YAW PID controls...
// PI absolute angle control driving a P rate control
// Input : desired Roll, Pitch and Yaw absolute angles. Output : Motor commands
void Attitude_control_v2()
void Attitude_control_v3()
{
float err_roll_rate;
float err_pitch_rate;
float roll_rate;
float pitch_rate;
float stable_roll,stable_pitch,stable_yaw;
// ROLL CONTROL
if (AP_mode == 2) // Normal Mode => Stabilization mode
if (AP_mode==2) // Normal Mode => Stabilization mode
err_roll = command_rx_roll - ToDeg(roll);
else
err_roll = (command_rx_roll + command_gps_roll) - ToDeg(roll); // Position control
err_roll = (command_rx_roll + command_gps_roll) - ToDeg(roll); // Position control
err_roll = constrain(err_roll,-25,25); // to limit max roll command...
roll_I += err_roll*G_Dt;
roll_I = constrain(roll_I,-20,20);
err_roll = constrain(err_roll, -25, 25); // to limit max roll command...
// New control term...
roll_rate = ToDeg(Omega[0]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
err_roll_rate = ((ch_roll - roll_mid) >> 1) - roll_rate;
roll_I += err_roll * G_Dt;
roll_I = constrain(roll_I, -20, 20);
// D term implementation => two parts: gyro part and command part
// To have a better (faster) response we can use the Gyro reading directly for the Derivative term...
// We also add a part that takes into account the command from user (stick) to make the system more responsive to user inputs
roll_D = - roll_rate; // Take into account Angular velocity of the stick (command)
// PID control
// PID absolute angle control
K_aux = KP_QUAD_ROLL; // Comment this out if you want to use transmitter to adjust gain
control_roll = K_aux * err_roll + KD_QUAD_ROLL * roll_D + KI_QUAD_ROLL * roll_I + STABLE_MODE_KP_RATE * err_roll_rate;
stable_roll = K_aux*err_roll + KI_QUAD_ROLL*roll_I;
// PD rate control (we use also the bias corrected gyro rates)
err_roll = stable_roll - ToDeg(Omega[0]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
control_roll = STABLE_MODE_KP_RATE_ROLL*err_roll;
// PITCH CONTROL
if (AP_mode==2) // Normal mode => Stabilization mode
err_pitch = command_rx_pitch - ToDeg(pitch);
else
else // GPS Position hold
err_pitch = (command_rx_pitch + command_gps_pitch) - ToDeg(pitch); // Position Control
err_pitch = constrain(err_pitch, -25, 25); // to limit max pitch command...
// New control term...
pitch_rate = ToDeg(Omega[1]);
err_pitch_rate = ((ch_pitch - pitch_mid) >> 1) - pitch_rate;
pitch_I += err_pitch * G_Dt;
pitch_I = constrain(pitch_I, -20, 20);
// D term
pitch_D = - pitch_rate;
// PID control
err_pitch = constrain(err_pitch,-25,25); // to limit max pitch command...
pitch_I += err_pitch*G_Dt;
pitch_I = constrain(pitch_I,-20,20);
// PID absolute angle control
K_aux = KP_QUAD_PITCH; // Comment this out if you want to use transmitter to adjust gain
control_pitch = K_aux * err_pitch + KD_QUAD_PITCH * pitch_D + KI_QUAD_PITCH * pitch_I + STABLE_MODE_KP_RATE * err_pitch_rate;
stable_pitch = K_aux*err_pitch + KI_QUAD_PITCH*pitch_I;
// P rate control (we use also the bias corrected gyro rates)
err_pitch = stable_pitch - ToDeg(Omega[1]);
control_pitch = STABLE_MODE_KP_RATE_PITCH*err_pitch;
// YAW CONTROL
err_yaw = command_rx_yaw - ToDeg(yaw);
if (err_yaw > 180) // Normalize to -180,180
err_yaw -= 360;
err_yaw -= 360;
else if(err_yaw < -180)
err_yaw += 360;
err_yaw = constrain(err_yaw, -60, 60); // to limit max yaw command...
yaw_I += err_yaw * G_Dt;
yaw_I = constrain(yaw_I, -20, 20);
yaw_D = - ToDeg(Omega[2]);
// PID control
control_yaw = KP_QUAD_YAW * err_yaw + KD_QUAD_YAW * yaw_D + KI_QUAD_YAW * yaw_I;
err_yaw = constrain(err_yaw,-60,60); // to limit max yaw command...
yaw_I += err_yaw*G_Dt;
yaw_I = constrain(yaw_I,-20,20);
// PID absoulte angle control
stable_yaw = KP_QUAD_YAW*err_yaw + KI_QUAD_YAW*yaw_I;
// PD rate control (we use also the bias corrected gyro rates)
err_yaw = stable_yaw - ToDeg(Omega[2]);
control_yaw = STABLE_MODE_KP_RATE_YAW*err_yaw;
}
// ACRO MODE
@ -227,6 +217,55 @@ void Rate_control()
control_yaw = Kp_RateYaw*err_yaw + Kd_RateYaw*yaw_D + Ki_RateYaw*yaw_I;
}
// RATE CONTROL MODE
// Using Omega vector (bias corrected gyro rate)
void Rate_control_v2()
{
static float previousRollRate, previousPitchRate, previousYawRate;
float currentRollRate, currentPitchRate, currentYawRate;
// ROLL CONTROL
currentRollRate = ToDeg(Omega[0]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
err_roll = ((ch_roll- roll_mid) * xmitFactor) - currentRollRate;
roll_I += err_roll*G_Dt;
roll_I = constrain(roll_I,-20,20);
roll_D = (currentRollRate - previousRollRate)/G_Dt;
previousRollRate = currentRollRate;
// PID control
control_roll = Kp_RateRoll*err_roll + Kd_RateRoll*roll_D + Ki_RateRoll*roll_I;
// PITCH CONTROL
currentPitchRate = ToDeg(Omega[1]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
err_pitch = ((ch_pitch - pitch_mid) * xmitFactor) - currentPitchRate;
pitch_I += err_pitch*G_Dt;
pitch_I = constrain(pitch_I,-20,20);
pitch_D = (currentPitchRate - previousPitchRate)/G_Dt;
previousPitchRate = currentPitchRate;
// PID control
control_pitch = Kp_RatePitch*err_pitch + Kd_RatePitch*pitch_D + Ki_RatePitch*pitch_I;
// YAW CONTROL
currentYawRate = ToDeg(Omega[2]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected;
err_yaw = ((ch_yaw - yaw_mid)* xmitFactor) - currentYawRate;
yaw_I += err_yaw*G_Dt;
yaw_I = constrain(yaw_I,-20,20);
yaw_D = (currentYawRate - previousYawRate)/G_Dt;
previousYawRate = currentYawRate;
// PID control
K_aux = KP_QUAD_YAW; // Comment this out if you want to use transmitter to adjust gain
control_yaw = Kp_RateYaw*err_yaw + Kd_RateYaw*yaw_D + Ki_RateYaw*yaw_I;
}
// Maximun slope filter for radio inputs... (limit max differences between readings)
int channel_filter(int ch, int ch_old)
{
@ -237,13 +276,13 @@ int channel_filter(int ch, int ch_old)
diff_ch_old = ch - ch_old; // Difference with old reading
if (diff_ch_old < 0)
{
if (diff_ch_old <- 40)
return(ch_old - 40); // We limit the max difference between readings
if (diff_ch_old <- 60)
return(ch_old - 60); // We limit the max difference between readings
}
else
{
if (diff_ch_old > 40)
return(ch_old + 40);
if (diff_ch_old > 60)
return(ch_old + 60);
}
return((ch + ch_old) >> 1); // Small filtering
//return(ch);
@ -265,6 +304,13 @@ void setup()
pinMode(RELE_pin,OUTPUT); // Rele output
digitalWrite(RELE_pin,LOW);
APM_RC.Init(); // APM Radio initialization
// RC channels Initialization (Quad motors)
APM_RC.OutputCh(0,MIN_THROTTLE); // Motors stoped
APM_RC.OutputCh(1,MIN_THROTTLE);
APM_RC.OutputCh(2,MIN_THROTTLE);
APM_RC.OutputCh(3,MIN_THROTTLE);
// delay(1000); // Wait until frame is not moving after initial power cord has connected
for(i = 0; i <= 50; i++) {
@ -278,7 +324,6 @@ void setup()
delay(20);
}
APM_RC.Init(); // APM Radio initialization
APM_ADC.Init(); // APM ADC library initialization
DataFlash.Init(); // DataFlash log initialization
@ -299,12 +344,6 @@ void setup()
if(pitch_mid < 1400 || pitch_mid > 1600) pitch_mid = 1500;
if(yaw_mid < 1400 || yaw_mid > 1600) yaw_mid = 1500;
// RC channels Initialization (Quad motors)
APM_RC.OutputCh(0,MIN_THROTTLE); // Motors stoped
APM_RC.OutputCh(1,MIN_THROTTLE);
APM_RC.OutputCh(2,MIN_THROTTLE);
APM_RC.OutputCh(3,MIN_THROTTLE);
if (MAGNETOMETER == 1)
APM_Compass.Init(); // I2C initialization
@ -320,12 +359,12 @@ void setup()
while (digitalRead(SW1_pin)==0)
{
Serial.println("Entering Log Read Mode...");
Log_Read(1,1000);
Log_Read(1,2000);
delay(30000);
}
Read_adc_raw();
delay(20);
delay(10);
// Offset values for accels and gyros...
AN_OFFSET[3] = acc_offset_x;
@ -387,30 +426,6 @@ void setup()
// Serial.println(Neutro_yaw);
Serial.print(yaw_mid);
#endif
#ifdef RADIO_TEST_MODE // RADIO TEST MODE TO TEST RADIO CHANNELS
while(1)
{
if (APM_RC.GetState()==1)
{
Serial.print("AIL:");
Serial.print(APM_RC.InputCh(0));
Serial.print("ELE:");
Serial.print(APM_RC.InputCh(1));
Serial.print("THR:");
Serial.print(APM_RC.InputCh(2));
Serial.print("YAW:");
Serial.print(APM_RC.InputCh(3));
Serial.print("AUX(mode):");
Serial.print(APM_RC.InputCh(4));
Serial.print("AUX2:");
Serial.print(APM_RC.InputCh(5));
Serial.println();
delay(200);
}
}
#endif
delay(1000);
DataFlash.StartWrite(1); // Start a write session on page 1
@ -427,6 +442,7 @@ void setup()
motorArmed = 0;
digitalWrite(LED_Green,HIGH); // Ready to go...
}
@ -482,11 +498,11 @@ void loop(){
Serial.print(",");
Serial.print(log_yaw);
for (int i = 0; i < 6; i++)
{
Serial.print(AN[i]);
Serial.print(",");
}
//for (int i = 0; i < 6; i++)
//{
// Serial.print(AN[i]);
// Serial.print(",");
//}
#endif
// Write Sensor raw data to DataFlash log
@ -500,33 +516,30 @@ void loop(){
// Stick position defines the desired angle in roll, pitch and yaw
ch_roll = channel_filter(APM_RC.InputCh(0) * ch_roll_slope + ch_roll_offset, ch_roll);
ch_pitch = channel_filter(APM_RC.InputCh(1) * ch_pitch_slope + ch_pitch_offset, ch_pitch);
ch_throttle = channel_filter(APM_RC.InputCh(2) * ch_throttle_slope + ch_throttle_offset, ch_throttle);
//ch_throttle = channel_filter(APM_RC.InputCh(2) * ch_throttle_slope + ch_throttle_offset, ch_throttle);
ch_throttle = channel_filter(APM_RC.InputCh(2), ch_throttle); // Transmiter calibration not used on throttle
ch_yaw = channel_filter(APM_RC.InputCh(3) * ch_yaw_slope + ch_yaw_offset, ch_yaw);
ch_aux = APM_RC.InputCh(4) * ch_aux_slope + ch_aux_offset;
ch_aux2 = APM_RC.InputCh(5) * ch_aux2_slope + ch_aux2_offset;
command_rx_roll_old = command_rx_roll;
command_rx_roll = (ch_roll-CHANN_CENTER) / 12.0;
command_rx_roll_diff = command_rx_roll - command_rx_roll_old;
command_rx_pitch_old = command_rx_pitch;
command_rx_pitch = (ch_pitch-CHANN_CENTER) / 12.0;
command_rx_pitch_diff = command_rx_pitch - command_rx_pitch_old;
// aux_float = (ch_yaw-Neutro_yaw) / 180.0;
aux_float = (ch_yaw-yaw_mid) / 180.0;
command_rx_roll = (ch_roll-roll_mid) / 12.0;
command_rx_pitch = (ch_pitch-pitch_mid) / 12.0;
//aux_float = (ch_yaw-Neutro_yaw) / 180.0;
if (abs(ch_yaw-yaw_mid)<12) // Take into account a bit of "dead zone" on yaw
aux_float = 0.0;
else
aux_float = (ch_yaw-yaw_mid) / 180.0;
command_rx_yaw += aux_float;
command_rx_yaw_diff = aux_float;
if (command_rx_yaw > 180) // Normalize yaw to -180,180 degrees
command_rx_yaw -= 360.0;
else if (command_rx_yaw < -180)
command_rx_yaw += 360.0;
// Read through comments in Attitude_control() if you wish to use transmitter to adjust P gains
// I use K_aux (channel 6) to adjust gains linked to a knob in the radio... [not used now]
//K_aux = K_aux*0.8 + ((ch_aux-1500)/100.0 + 0.6)*0.2;
K_aux = K_aux * 0.8 + ((ch_aux2-AUX_MID) / 300.0 + 1.7) * 0.2; // /300 + 1.0
if (K_aux < 0)
K_aux = 0;
if (K_aux < 0) K_aux = 0;
//Serial.print(",");
//Serial.print(K_aux);
@ -590,7 +603,8 @@ void loop(){
// Write GPS data to DataFlash log
Log_Write_GPS(GPS.Time, GPS.Lattitude,GPS.Longitude,GPS.Altitude, GPS.Ground_Speed, GPS.Ground_Course, GPS.Fix, GPS.NumSats);
if (GPS.Fix >= 2)
//if (GPS.Fix >= 2)
if (GPS.Fix)
digitalWrite(LED_Red,HIGH); // GPS Fix => Blue LED
else
digitalWrite(LED_Red,LOW);
@ -613,27 +627,25 @@ void loop(){
// Control methodology selected using AUX2
if (ch_aux2 < 1200) {
gled_speed = 1200;
Attitude_control_v2();
Attitude_control_v3();
}
else
{
gled_speed = 400;
Rate_control();
Rate_control_v2();
// Reset yaw, so if we change to stable mode we continue with the actual yaw direction
command_rx_yaw = ToDeg(yaw);
command_rx_yaw_diff = 0;
}
// Arm motor output : Throttle down and full yaw right for more than 2 seconds
if (ch_throttle < 1200) {
if (ch_throttle < (MIN_THROTTLE + 100)) {
control_yaw = 0;
command_rx_yaw = ToDeg(yaw);
command_rx_yaw_diff = 0;
if (ch_yaw < 1200) {
if (ch_yaw > 1850) {
if (Arming_counter > ARM_DELAY){
if(ch_throttle > 800) {
motorArmed = 1;
minThrottle = 1100;
minThrottle = MIN_THROTTLE+60; // A minimun value for mantain a bit if throttle
}
}
else
@ -642,7 +654,7 @@ void loop(){
else
Arming_counter=0;
// To Disarm motor output : Throttle down and full yaw left for more than 2 seconds
if (ch_yaw > 1800) {
if (ch_yaw < 1150) {
if (Disarming_counter > DISARM_DELAY){
motorArmed = 0;
minThrottle = MIN_THROTTLE;
@ -664,16 +676,16 @@ void loop(){
digitalWrite(FR_LED, HIGH); // AM-Mode
#endif
#ifdef FLIGHT_MODE_+
rightMotor = constrain(ch_throttle - control_roll - control_yaw, minThrottle, 2000);
leftMotor = constrain(ch_throttle + control_roll - control_yaw, minThrottle, 2000);
frontMotor = constrain(ch_throttle + control_pitch + control_yaw, minThrottle, 2000);
backMotor = constrain(ch_throttle - control_pitch + control_yaw, minThrottle, 2000);
rightMotor = constrain(ch_throttle - control_roll + control_yaw, minThrottle, 2000);
leftMotor = constrain(ch_throttle + control_roll + control_yaw, minThrottle, 2000);
frontMotor = constrain(ch_throttle + control_pitch - control_yaw, minThrottle, 2000);
backMotor = constrain(ch_throttle - control_pitch - control_yaw, minThrottle, 2000);
#endif
#ifdef FLIGHT_MODE_X
rightMotor = constrain(ch_throttle - control_roll + control_pitch - control_yaw, minThrottle, 2000); // front right motor
leftMotor = constrain(ch_throttle + control_roll - control_pitch - control_yaw, minThrottle, 2000); // rear left motor
frontMotor = constrain(ch_throttle + control_roll + control_pitch + control_yaw, minThrottle, 2000); // front left motor
backMotor = constrain(ch_throttle - control_roll - control_pitch + control_yaw, minThrottle, 2000); // rear right motor
rightMotor = constrain(ch_throttle - control_roll + control_pitch + control_yaw, minThrottle, 2000); // front right motor
leftMotor = constrain(ch_throttle + control_roll - control_pitch + control_yaw, minThrottle, 2000); // rear left motor
frontMotor = constrain(ch_throttle + control_roll + control_pitch - control_yaw, minThrottle, 2000); // front left motor
backMotor = constrain(ch_throttle - control_roll - control_pitch - control_yaw, minThrottle, 2000); // rear right motor
#endif
}
if (motorArmed == 0) {
@ -691,7 +703,6 @@ void loop(){
yaw_I = 0;
// Initialize yaw command to actual yaw when throttle is down...
command_rx_yaw = ToDeg(yaw);
command_rx_yaw_diff = 0;
}
APM_RC.OutputCh(0, rightMotor); // Right motor
APM_RC.OutputCh(1, leftMotor); // Left motor
@ -735,8 +746,7 @@ void loop(){
} // End of void loop()
// END of Arducopter.pde

View File

@ -9,6 +9,7 @@
#define LOG_GPS_MSG 0x02
#define LOG_RADIO_MSG 0x03
#define LOG_SENSOR_MSG 0x04
#define LOG_PID_MSG 0x05
// Write a Sensor Raw data packet
void Log_Write_Sensor(int s1, int s2, int s3,int s4, int s5, int s6, int s7)
@ -38,6 +39,20 @@ void Log_Write_Attitude(int log_roll, int log_pitch, int log_yaw)
DataFlash.WriteByte(END_BYTE);
}
// Write a PID control info
void Log_Write_PID(byte num_PID, int P, int I,int D, int output)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_PID_MSG);
DataFlash.WriteByte(num_PID);
DataFlash.WriteInt(P);
DataFlash.WriteInt(I);
DataFlash.WriteInt(D);
DataFlash.WriteInt(output);
DataFlash.WriteByte(END_BYTE);
}
// Write an GPS packet. Total length : 30 bytes
void Log_Write_GPS(long log_Time, long log_Lattitude, long log_Longitude, long log_Altitude,
long log_Ground_Speed, long log_Ground_Course, byte log_Fix, byte log_NumSats)
@ -112,6 +127,22 @@ void Log_Read_Attitude()
Serial.println();
}
// Read a Sensor raw data packet
void Log_Read_PID()
{
Serial.print("PID:");
Serial.print((int)DataFlash.ReadByte()); // NUM_PID
Serial.print(",");
Serial.print(DataFlash.ReadInt()); // P
Serial.print(",");
Serial.print(DataFlash.ReadInt()); // I
Serial.print(",");
Serial.print(DataFlash.ReadInt()); // D
Serial.print(",");
Serial.print(DataFlash.ReadInt()); // output
Serial.println();
}
// Read a GPS packet
void Log_Read_GPS()
{
@ -176,7 +207,7 @@ void Log_Read(int start_page, int end_page)
{
byte data;
byte log_step=0;
int packet_count=0;
long packet_count=0;
DataFlash.StartRead(start_page);
while (DataFlash.GetPage() < end_page)
@ -211,6 +242,10 @@ void Log_Read(int start_page, int end_page)
Log_Read_Sensor();
log_step++;
break;
case LOG_PID_MSG:
Log_Read_PID();
log_step++;
break;
default:
Serial.print("Error Reading Packet: ");
Serial.print(packet_count);

View File

@ -24,36 +24,38 @@ void Position_control(long lat_dest, long lon_dest)
{
long Lon_diff;
long Lat_diff;
float gps_err_roll;
float gps_err_pitch;
Lon_diff = lon_dest - GPS.Longitude;
Lat_diff = lat_dest - GPS.Lattitude;
// ROLL
gps_err_roll_old = gps_err_roll;
//Optimization : cos(yaw) = DCM_Matrix[0][0] ; sin(yaw) = DCM_Matrix[1][0]
gps_err_roll = (float)Lon_diff * GEOG_CORRECTION_FACTOR * DCM_Matrix[0][0] - (float)Lat_diff * DCM_Matrix[1][0];
gps_roll_D = (gps_err_roll-gps_err_roll_old) / GPS_Dt;
gps_err_roll_old = gps_err_roll;
gps_roll_I += gps_err_roll * GPS_Dt;
gps_roll_I = constrain(gps_roll_I, -800, 800);
command_gps_roll = KP_GPS_ROLL * gps_err_roll + KD_GPS_ROLL * gps_roll_D + KI_GPS_ROLL * gps_roll_I;
command_gps_roll = constrain(command_gps_roll, -GPS_MAX_ANGLE, GPS_MAX_ANGLE); // Limit max command
//Log_Write_PID(1,KP_GPS_ROLL*gps_err_roll*10,KI_GPS_ROLL*gps_roll_I*10,KD_GPS_ROLL*gps_roll_D*10,command_gps_roll*10);
// PITCH
gps_err_pitch_old = gps_err_pitch;
gps_err_pitch = -(float)Lat_diff * DCM_Matrix[0][0] - (float)Lon_diff * GEOG_CORRECTION_FACTOR * DCM_Matrix[1][0];
gps_pitch_D = (gps_err_pitch - gps_err_pitch_old) / GPS_Dt;
gps_err_pitch_old = gps_err_pitch;
gps_pitch_I += gps_err_pitch * GPS_Dt;
gps_pitch_I = constrain(gps_pitch_I, -800, 800);
command_gps_pitch = KP_GPS_PITCH * gps_err_pitch + KD_GPS_PITCH * gps_pitch_D + KI_GPS_PITCH * gps_pitch_I;
command_gps_pitch = constrain(command_gps_pitch, -GPS_MAX_ANGLE, GPS_MAX_ANGLE); // Limit max command
//Log_Write_PID(2,KP_GPS_PITCH*gps_err_pitch*10,KI_GPS_PITCH*gps_pitch_I*10,KD_GPS_PITCH*gps_pitch_D*10,command_gps_pitch*10);
}
/* ************************************************************ */
@ -68,4 +70,4 @@ void Altitude_control(int target_sonar_altitude)
command_altitude = Initial_Throttle + KP_ALTITUDE * err_altitude + KD_ALTITUDE * altitude_D + KI_ALTITUDE * altitude_I;
}

View File

@ -26,14 +26,14 @@ void readSerialCommand() {
case 'A': // Stable PID
KP_QUAD_ROLL = readFloatSerial();
KI_QUAD_ROLL = readFloatSerial();
KD_QUAD_ROLL = readFloatSerial();
STABLE_MODE_KP_RATE_ROLL = readFloatSerial();
KP_QUAD_PITCH = readFloatSerial();
KI_QUAD_PITCH = readFloatSerial();
KD_QUAD_PITCH = readFloatSerial();
STABLE_MODE_KP_RATE_PITCH = readFloatSerial();
KP_QUAD_YAW = readFloatSerial();
KI_QUAD_YAW = readFloatSerial();
KD_QUAD_YAW = readFloatSerial();
STABLE_MODE_KP_RATE = readFloatSerial();
STABLE_MODE_KP_RATE_YAW = readFloatSerial();
STABLE_MODE_KP_RATE = readFloatSerial(); // NOT USED NOW
MAGNETOMETER = readFloatSerial();
break;
case 'C': // Receive GPS PID
@ -155,21 +155,21 @@ void sendSerialTelemetry() {
comma();
Serial.print(KI_QUAD_ROLL, 3);
comma();
Serial.print(KD_QUAD_ROLL, 3);
Serial.print(STABLE_MODE_KP_RATE_ROLL, 3);
comma();
Serial.print(KP_QUAD_PITCH, 3);
comma();
Serial.print(KI_QUAD_PITCH, 3);
comma();
Serial.print(KD_QUAD_PITCH, 3);
Serial.print(STABLE_MODE_KP_RATE_PITCH, 3);
comma();
Serial.print(KP_QUAD_YAW, 3);
comma();
Serial.print(KI_QUAD_YAW, 3);
comma();
Serial.print(KD_QUAD_YAW, 3);
Serial.print(STABLE_MODE_KP_RATE_YAW, 3);
comma();
Serial.print(STABLE_MODE_KP_RATE, 3);
Serial.print(STABLE_MODE_KP_RATE, 3); // NOT USED NOW
comma();
Serial.println(MAGNETOMETER, 3);
queryType = 'X';

View File

@ -81,14 +81,14 @@ TODO:
// Following variables stored in EEPROM
float KP_QUAD_ROLL;
float KI_QUAD_ROLL;
float KD_QUAD_ROLL;
float STABLE_MODE_KP_RATE_ROLL;
float KP_QUAD_PITCH;
float KI_QUAD_PITCH;
float KD_QUAD_PITCH;
float STABLE_MODE_KP_RATE_PITCH;
float KP_QUAD_YAW;
float KI_QUAD_YAW;
float KD_QUAD_YAW;
float STABLE_MODE_KP_RATE;
float STABLE_MODE_KP_RATE_YAW;
float STABLE_MODE_KP_RATE; // NOT USED NOW
float KP_GPS_ROLL;
float KI_GPS_ROLL;
float KD_GPS_ROLL;
@ -137,23 +137,23 @@ float ch_aux2_offset = 0;
// This function call contains the default values that are set to the ArduCopter
// when a "Default EEPROM Value" command is sent through serial interface
void defaultUserConfig() {
KP_QUAD_ROLL = 1.8;
KI_QUAD_ROLL = 0.30; //0.4
KD_QUAD_ROLL = 0.4; //0.48
KP_QUAD_PITCH = 1.8;
KI_QUAD_PITCH = 0.30; //0.4
KD_QUAD_PITCH = 0.4; //0.48
KP_QUAD_YAW = 3.6;
KP_QUAD_ROLL = 4.0;
KI_QUAD_ROLL = 0.15;
STABLE_MODE_KP_RATE_ROLL = 1.2;
KP_QUAD_PITCH = 4.0;
KI_QUAD_PITCH = 0.15;
STABLE_MODE_KP_RATE_PITCH = 1.2;
KP_QUAD_YAW = 3.0;
KI_QUAD_YAW = 0.15;
KD_QUAD_YAW = 1.2;
STABLE_MODE_KP_RATE = 0.2; // New param for stable mode
KP_GPS_ROLL = 0.02;
KI_GPS_ROLL = 0.008;
KD_GPS_ROLL = 0.006;
KP_GPS_PITCH = 0.02;
KI_GPS_PITCH = 0.008;
KD_GPS_PITCH = 0.006;
GPS_MAX_ANGLE = 18;
STABLE_MODE_KP_RATE_YAW = 2.4;
STABLE_MODE_KP_RATE = 0.2; // NOT USED NOW
KP_GPS_ROLL = 0.015;
KI_GPS_ROLL = 0.005;
KD_GPS_ROLL = 0.01;
KP_GPS_PITCH = 0.015;
KI_GPS_PITCH = 0.005;
KD_GPS_PITCH = 0.01;
GPS_MAX_ANGLE = 22;
KP_ALTITUDE = 0.8;
KI_ALTITUDE = 0.2;
KD_ALTITUDE = 0.2;
@ -169,16 +169,16 @@ void defaultUserConfig() {
Ki_YAW = 0.00005;
GEOG_CORRECTION_FACTOR = 0.87;
MAGNETOMETER = 0;
Kp_RateRoll = 0.6;
Ki_RateRoll = 0.1;
Kd_RateRoll = -0.8;
Kp_RatePitch = 0.6;
Ki_RatePitch = 0.1;
Kd_RatePitch = -0.8;
Kp_RateYaw = 1.6;
Ki_RateYaw = 0.3;
Kd_RateYaw = 0;
xmitFactor = 0.8;
Kp_RateRoll = 1.95;
Ki_RateRoll = 0.0;
Kd_RateRoll = 0.0;
Kp_RatePitch = 1.95;
Ki_RatePitch = 0.0;
Kd_RatePitch = 0.0;
Kp_RateYaw = 3.2;
Ki_RateYaw = 0.0;
Kd_RateYaw = 0.0;
xmitFactor = 0.32;
roll_mid = 1500;
pitch_mid = 1500;
yaw_mid = 1500;
@ -199,14 +199,14 @@ void defaultUserConfig() {
// EEPROM storage addresses
#define KP_QUAD_ROLL_ADR 0
#define KI_QUAD_ROLL_ADR 8
#define KD_QUAD_ROLL_ADR 4
#define STABLE_MODE_KP_RATE_ROLL_ADR 4
#define KP_QUAD_PITCH_ADR 12
#define KI_QUAD_PITCH_ADR 20
#define KD_QUAD_PITCH_ADR 16
#define STABLE_MODE_KP_RATE_PITCH_ADR 16
#define KP_QUAD_YAW_ADR 24
#define KI_QUAD_YAW_ADR 32
#define KD_QUAD_YAW_ADR 28
#define STABLE_MODE_KP_RATE_ADR 36
#define STABLE_MODE_KP_RATE_YAW_ADR 28
#define STABLE_MODE_KP_RATE_ADR 36 // NOT USED NOW
#define KP_GPS_ROLL_ADR 40
#define KI_GPS_ROLL_ADR 48
#define KD_GPS_ROLL_ADR 44
@ -281,14 +281,14 @@ void writeEEPROM(float value, int address) {
void readUserConfig() {
KP_QUAD_ROLL = readEEPROM(KP_QUAD_ROLL_ADR);
KI_QUAD_ROLL = readEEPROM(KI_QUAD_ROLL_ADR);
KD_QUAD_ROLL = readEEPROM(KD_QUAD_ROLL_ADR);
STABLE_MODE_KP_RATE_ROLL = readEEPROM(STABLE_MODE_KP_RATE_ROLL_ADR);
KP_QUAD_PITCH = readEEPROM(KP_QUAD_PITCH_ADR);
KI_QUAD_PITCH = readEEPROM(KI_QUAD_PITCH_ADR);
KD_QUAD_PITCH = readEEPROM(KD_QUAD_PITCH_ADR);
STABLE_MODE_KP_RATE_PITCH = readEEPROM(STABLE_MODE_KP_RATE_PITCH_ADR);
KP_QUAD_YAW = readEEPROM(KP_QUAD_YAW_ADR);
KI_QUAD_YAW = readEEPROM(KI_QUAD_YAW_ADR);
KD_QUAD_YAW = readEEPROM(KD_QUAD_YAW_ADR);
STABLE_MODE_KP_RATE = readEEPROM(STABLE_MODE_KP_RATE_ADR);
STABLE_MODE_KP_RATE_YAW = readEEPROM(STABLE_MODE_KP_RATE_YAW_ADR);
STABLE_MODE_KP_RATE = readEEPROM(STABLE_MODE_KP_RATE_ADR); // NOT USED NOW
KP_GPS_ROLL = readEEPROM(KP_GPS_ROLL_ADR);
KI_GPS_ROLL = readEEPROM(KI_GPS_ROLL_ADR);
KD_GPS_ROLL = readEEPROM(KD_GPS_ROLL_ADR);
@ -340,15 +340,15 @@ void readUserConfig() {
void writeUserConfig() {
writeEEPROM(KP_QUAD_ROLL, KP_QUAD_ROLL_ADR);
writeEEPROM(KD_QUAD_ROLL, KD_QUAD_ROLL_ADR);
writeEEPROM(KI_QUAD_ROLL, KI_QUAD_ROLL_ADR);
writeEEPROM(STABLE_MODE_KP_RATE_ROLL, STABLE_MODE_KP_RATE_ROLL_ADR);
writeEEPROM(KP_QUAD_PITCH, KP_QUAD_PITCH_ADR);
writeEEPROM(KD_QUAD_PITCH, KD_QUAD_PITCH_ADR);
writeEEPROM(KI_QUAD_PITCH, KI_QUAD_PITCH_ADR);
writeEEPROM(STABLE_MODE_KP_RATE_PITCH, STABLE_MODE_KP_RATE_PITCH_ADR);
writeEEPROM(KP_QUAD_YAW, KP_QUAD_YAW_ADR);
writeEEPROM(KD_QUAD_YAW, KD_QUAD_YAW_ADR);
writeEEPROM(KI_QUAD_YAW, KI_QUAD_YAW_ADR);
writeEEPROM(STABLE_MODE_KP_RATE, STABLE_MODE_KP_RATE_ADR);
writeEEPROM(STABLE_MODE_KP_RATE_YAW, STABLE_MODE_KP_RATE_YAW_ADR);
writeEEPROM(STABLE_MODE_KP_RATE, STABLE_MODE_KP_RATE_ADR); // NOT USED NOW
writeEEPROM(KP_GPS_ROLL, KP_GPS_ROLL_ADR);
writeEEPROM(KD_GPS_ROLL, KD_GPS_ROLL_ADR);
writeEEPROM(KI_GPS_ROLL, KI_GPS_ROLL_ADR);
@ -396,4 +396,4 @@ void writeUserConfig() {
writeEEPROM(ch_yaw_offset, ch_yaw_offset_ADR);
writeEEPROM(ch_aux_offset, ch_aux_offset_ADR);
writeEEPROM(ch_aux2_offset, ch_aux2_offset_ADR);
}
}