diff --git a/ArduPlane/Attitude.pde b/ArduPlane/Attitude.pde index 6c6169f3a8..f6054acafa 100644 --- a/ArduPlane/Attitude.pde +++ b/ArduPlane/Attitude.pde @@ -6,32 +6,32 @@ static void stabilize() { - float ch1_inf = 1.0; - float ch2_inf = 1.0; - float ch4_inf = 1.0; - float speed_scaler; + float ch1_inf = 1.0; + float ch2_inf = 1.0; + float ch4_inf = 1.0; + float speed_scaler; - if (airspeed.use()) { + if (airspeed.use()) { float aspeed = airspeed.get_airspeed(); - if (aspeed > 0) { - speed_scaler = g.scaling_speed / aspeed; + if (aspeed > 0) { + speed_scaler = g.scaling_speed / aspeed; } else { - speed_scaler = 2.0; + speed_scaler = 2.0; } speed_scaler = constrain(speed_scaler, 0.5, 2.0); - } else { - if (g.channel_throttle.servo_out > 0){ - speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / g.channel_throttle.servo_out / 2.0); // First order taylor expansion of square root - // Should maybe be to the 2/7 power, but we aren't goint to implement that... - }else{ - speed_scaler = 1.67; - } - speed_scaler = constrain(speed_scaler, 0.6, 1.67); // This case is constrained tighter as we don't have real speed info - } + } else { + if (g.channel_throttle.servo_out > 0) { + speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / g.channel_throttle.servo_out / 2.0); // First order taylor expansion of square root + // Should maybe be to the 2/7 power, but we aren't goint to implement that... + }else{ + speed_scaler = 1.67; + } + speed_scaler = constrain(speed_scaler, 0.6, 1.67); // This case is constrained tighter as we don't have real speed info + } - if(crash_timer > 0){ - nav_roll_cd = 0; - } + if(crash_timer > 0) { + nav_roll_cd = 0; + } if (inverted_flight) { // we want to fly upside down. We need to cope with wrap of @@ -43,90 +43,90 @@ static void stabilize() if (ahrs.roll_sensor < 0) nav_roll_cd -= 36000; } - // For Testing Only - // roll_sensor = (radio_in[CH_RUDDER] - radio_trim[CH_RUDDER]) * 10; - // Serial.printf_P(PSTR(" roll_sensor ")); - // Serial.print(roll_sensor,DEC); + // For Testing Only + // roll_sensor = (radio_in[CH_RUDDER] - radio_trim[CH_RUDDER]) * 10; + // Serial.printf_P(PSTR(" roll_sensor ")); + // Serial.print(roll_sensor,DEC); - // Calculate dersired servo output for the roll - // --------------------------------------------- - g.channel_roll.servo_out = g.pidServoRoll.get_pid((nav_roll_cd - ahrs.roll_sensor), speed_scaler); - int32_t tempcalc = nav_pitch_cd + - fabs(ahrs.roll_sensor * g.kff_pitch_compensation) + - (g.channel_throttle.servo_out * g.kff_throttle_to_pitch) - - (ahrs.pitch_sensor - g.pitch_trim_cd); + // Calculate dersired servo output for the roll + // --------------------------------------------- + g.channel_roll.servo_out = g.pidServoRoll.get_pid((nav_roll_cd - ahrs.roll_sensor), speed_scaler); + int32_t tempcalc = nav_pitch_cd + + fabs(ahrs.roll_sensor * g.kff_pitch_compensation) + + (g.channel_throttle.servo_out * g.kff_throttle_to_pitch) - + (ahrs.pitch_sensor - g.pitch_trim_cd); if (inverted_flight) { // when flying upside down the elevator control is inverted tempcalc = -tempcalc; } - g.channel_pitch.servo_out = g.pidServoPitch.get_pid(tempcalc, speed_scaler); + g.channel_pitch.servo_out = g.pidServoPitch.get_pid(tempcalc, speed_scaler); - // Mix Stick input to allow users to override control surfaces - // ----------------------------------------------------------- - if ((control_mode < FLY_BY_WIRE_A) || + // Mix Stick input to allow users to override control surfaces + // ----------------------------------------------------------- + if ((control_mode < FLY_BY_WIRE_A) || (g.stick_mixing && geofence_stickmixing() && control_mode > FLY_BY_WIRE_B && failsafe == FAILSAFE_NONE)) { - // TODO: use RC_Channel control_mix function? - ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim; - ch1_inf = fabs(ch1_inf); - ch1_inf = min(ch1_inf, 400.0); - ch1_inf = ((400.0 - ch1_inf) /400.0); + // TODO: use RC_Channel control_mix function? + ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim; + ch1_inf = fabs(ch1_inf); + ch1_inf = min(ch1_inf, 400.0); + ch1_inf = ((400.0 - ch1_inf) /400.0); - ch2_inf = (float)g.channel_pitch.radio_in - g.channel_pitch.radio_trim; - ch2_inf = fabs(ch2_inf); - ch2_inf = min(ch2_inf, 400.0); - ch2_inf = ((400.0 - ch2_inf) /400.0); + ch2_inf = (float)g.channel_pitch.radio_in - g.channel_pitch.radio_trim; + ch2_inf = fabs(ch2_inf); + ch2_inf = min(ch2_inf, 400.0); + ch2_inf = ((400.0 - ch2_inf) /400.0); - // scale the sensor input based on the stick input - // ----------------------------------------------- - g.channel_roll.servo_out *= ch1_inf; - g.channel_pitch.servo_out *= ch2_inf; + // scale the sensor input based on the stick input + // ----------------------------------------------- + g.channel_roll.servo_out *= ch1_inf; + g.channel_pitch.servo_out *= ch2_inf; - // Mix in stick inputs - // ------------------- - g.channel_roll.servo_out += g.channel_roll.pwm_to_angle(); - g.channel_pitch.servo_out += g.channel_pitch.pwm_to_angle(); + // Mix in stick inputs + // ------------------- + g.channel_roll.servo_out += g.channel_roll.pwm_to_angle(); + g.channel_pitch.servo_out += g.channel_pitch.pwm_to_angle(); - //Serial.printf_P(PSTR(" servo_out[CH_ROLL] ")); - //Serial.println(servo_out[CH_ROLL],DEC); - } + //Serial.printf_P(PSTR(" servo_out[CH_ROLL] ")); + //Serial.println(servo_out[CH_ROLL],DEC); + } - // stick mixing performed for rudder for all cases including FBW unless disabled for higher modes - // important for steering on the ground during landing - // ----------------------------------------------- - if (control_mode <= FLY_BY_WIRE_B || - (g.stick_mixing && + // stick mixing performed for rudder for all cases including FBW unless disabled for higher modes + // important for steering on the ground during landing + // ----------------------------------------------- + if (control_mode <= FLY_BY_WIRE_B || + (g.stick_mixing && geofence_stickmixing() && failsafe == FAILSAFE_NONE)) { - ch4_inf = (float)g.channel_rudder.radio_in - (float)g.channel_rudder.radio_trim; - ch4_inf = fabs(ch4_inf); - ch4_inf = min(ch4_inf, 400.0); - ch4_inf = ((400.0 - ch4_inf) /400.0); - } + ch4_inf = (float)g.channel_rudder.radio_in - (float)g.channel_rudder.radio_trim; + ch4_inf = fabs(ch4_inf); + ch4_inf = min(ch4_inf, 400.0); + ch4_inf = ((400.0 - ch4_inf) /400.0); + } - // Apply output to Rudder - // ---------------------- - calc_nav_yaw(speed_scaler); - g.channel_rudder.servo_out *= ch4_inf; - g.channel_rudder.servo_out += g.channel_rudder.pwm_to_angle(); + // Apply output to Rudder + // ---------------------- + calc_nav_yaw(speed_scaler); + g.channel_rudder.servo_out *= ch4_inf; + g.channel_rudder.servo_out += g.channel_rudder.pwm_to_angle(); - // Call slew rate limiter if used - // ------------------------------ - //#if(ROLL_SLEW_LIMIT != 0) - // g.channel_roll.servo_out = roll_slew_limit(g.channel_roll.servo_out); - //#endif + // Call slew rate limiter if used + // ------------------------------ + //#if(ROLL_SLEW_LIMIT != 0) + // g.channel_roll.servo_out = roll_slew_limit(g.channel_roll.servo_out); + //#endif } static void crash_checker() { - if(ahrs.pitch_sensor < -4500){ - crash_timer = 255; - } - if(crash_timer > 0) - crash_timer--; + if(ahrs.pitch_sensor < -4500) { + crash_timer = 255; + } + if(crash_timer > 0) + crash_timer--; } @@ -139,34 +139,34 @@ static void calc_throttle() // groundspeed_undershoot > 0 in the no airspeed sensor case; PID // control? - // no airspeed sensor, we use nav pitch to determine the proper throttle output - // AUTO, RTL, etc - // --------------------------------------------------------------------------- - if (nav_pitch_cd >= 0) { - g.channel_throttle.servo_out = throttle_target + (g.throttle_max - throttle_target) * nav_pitch_cd / g.pitch_limit_max_cd; - } else { - g.channel_throttle.servo_out = throttle_target - (throttle_target - g.throttle_min) * nav_pitch_cd / g.pitch_limit_min_cd; - } + // no airspeed sensor, we use nav pitch to determine the proper throttle output + // AUTO, RTL, etc + // --------------------------------------------------------------------------- + if (nav_pitch_cd >= 0) { + g.channel_throttle.servo_out = throttle_target + (g.throttle_max - throttle_target) * nav_pitch_cd / g.pitch_limit_max_cd; + } else { + g.channel_throttle.servo_out = throttle_target - (throttle_target - g.throttle_min) * nav_pitch_cd / g.pitch_limit_min_cd; + } - g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); - } else { - // throttle control with airspeed compensation - // ------------------------------------------- - energy_error = airspeed_energy_error + altitude_error_cm * 0.098f; + g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); + } else { + // throttle control with airspeed compensation + // ------------------------------------------- + energy_error = airspeed_energy_error + altitude_error_cm * 0.098f; - // positive energy errors make the throttle go higher - g.channel_throttle.servo_out = g.throttle_cruise + g.pidTeThrottle.get_pid(energy_error); - g.channel_throttle.servo_out += (g.channel_pitch.servo_out * g.kff_pitch_to_throttle); + // positive energy errors make the throttle go higher + g.channel_throttle.servo_out = g.throttle_cruise + g.pidTeThrottle.get_pid(energy_error); + g.channel_throttle.servo_out += (g.channel_pitch.servo_out * g.kff_pitch_to_throttle); - g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, - g.throttle_min.get(), g.throttle_max.get()); // TODO - resolve why "saved" is used here versus "current" - } + g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, + g.throttle_min.get(), g.throttle_max.get()); // TODO - resolve why "saved" is used here versus "current" + } } /***************************************** - * Calculate desired roll/pitch/yaw angles (in medium freq loop) - *****************************************/ +* Calculate desired roll/pitch/yaw angles (in medium freq loop) +*****************************************/ // Yaw is separated into a function for future implementation of heading hold on rolling take-off // ---------------------------------------------------------------------------------------- @@ -177,7 +177,7 @@ static void calc_nav_yaw(float speed_scaler) if (hold_course != -1) { // steering on or close to ground - g.channel_rudder.servo_out += g.pidWheelSteer.get_pid(bearing_error_cd); + g.channel_rudder.servo_out += g.pidWheelSteer.get_pid(bearing_error_cd); } else { // a PID to coordinate the turn (drive y axis accel to zero) Vector3f temp = imu.get_accel(); @@ -190,14 +190,14 @@ static void calc_nav_yaw(float speed_scaler) static void calc_nav_pitch() { - // Calculate the Pitch of the plane - // -------------------------------- - if (airspeed.use()) { - nav_pitch_cd = -g.pidNavPitchAirspeed.get_pid(airspeed_error_cm); - } else { - nav_pitch_cd = g.pidNavPitchAltitude.get_pid(altitude_error_cm); + // Calculate the Pitch of the plane + // -------------------------------- + if (airspeed.use()) { + nav_pitch_cd = -g.pidNavPitchAirspeed.get_pid(airspeed_error_cm); + } else { + nav_pitch_cd = g.pidNavPitchAltitude.get_pid(altitude_error_cm); } - nav_pitch_cd = constrain(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get()); + nav_pitch_cd = constrain(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get()); } @@ -205,26 +205,26 @@ static void calc_nav_roll() { #define NAV_ROLL_BY_RATE 0 #if NAV_ROLL_BY_RATE - // Scale from centidegrees (PID input) to radians per second. A P gain of 1.0 should result in a - // desired rate of 1 degree per second per degree of error - if you're 15 degrees off, you'll try - // to turn at 15 degrees per second. - float turn_rate = ToRad(g.pidNavRoll.get_pid(bearing_error_cd) * .01); + // Scale from centidegrees (PID input) to radians per second. A P gain of 1.0 should result in a + // desired rate of 1 degree per second per degree of error - if you're 15 degrees off, you'll try + // to turn at 15 degrees per second. + float turn_rate = ToRad(g.pidNavRoll.get_pid(bearing_error_cd) * .01); - // Use airspeed_cruise as an analogue for airspeed if we don't have airspeed. - float speed; - if(airspeed.use()) { - speed = airspeed.get_airspeed(); - } else { - speed = g.airspeed_cruise_cm*0.01; - - // Floor the speed so that the user can't enter a bad value - if(speed < 6) { - speed = 6; - } - } - - // Bank angle = V*R/g, where V is airspeed, R is turn rate, and g is gravity. - nav_roll = ToDeg(atan(speed*turn_rate/9.81)*100); + // Use airspeed_cruise as an analogue for airspeed if we don't have airspeed. + float speed; + if(airspeed.use()) { + speed = airspeed.get_airspeed(); + } else { + speed = g.airspeed_cruise_cm*0.01; + + // Floor the speed so that the user can't enter a bad value + if(speed < 6) { + speed = 6; + } + } + + // Bank angle = V*R/g, where V is airspeed, R is turn rate, and g is gravity. + nav_roll = ToDeg(atan(speed*turn_rate/9.81)*100); #else // this is the old nav_roll calculation. We will use this for 2.50 @@ -234,34 +234,34 @@ static void calc_nav_roll() nav_roll_cd = g.pidNavRoll.get_pid(bearing_error_cd, nav_gain_scaler); //returns desired bank angle in degrees*100 #endif - nav_roll_cd = constrain(nav_roll_cd, -g.roll_limit_cd.get(), g.roll_limit_cd.get()); + nav_roll_cd = constrain(nav_roll_cd, -g.roll_limit_cd.get(), g.roll_limit_cd.get()); } /***************************************** - * Roll servo slew limit - *****************************************/ +* Roll servo slew limit +*****************************************/ /* -float roll_slew_limit(float servo) -{ - static float last; - float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f); - last = servo; - return temp; -}*/ + * float roll_slew_limit(float servo) + * { + * static float last; + * float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f); + * last = servo; + * return temp; + * }*/ /***************************************** - * Throttle slew limit - *****************************************/ +* Throttle slew limit +*****************************************/ static void throttle_slew_limit() { - static int16_t last = 1000; - if(g.throttle_slewrate) { // if slew limit rate is set to zero then do not slew limit + static int16_t last = 1000; + if(g.throttle_slewrate) { // if slew limit rate is set to zero then do not slew limit - float temp = g.throttle_slewrate * G_Dt * 10.f; // * 10 to scale % to pwm range of 1000 to 2000 - g.channel_throttle.radio_out = constrain(g.channel_throttle.radio_out, last - (int)temp, last + (int)temp); - last = g.channel_throttle.radio_out; - } + float temp = g.throttle_slewrate * G_Dt * 10.f; // * 10 to scale % to pwm range of 1000 to 2000 + g.channel_throttle.radio_out = constrain(g.channel_throttle.radio_out, last - (int)temp, last + (int)temp); + last = g.channel_throttle.radio_out; + } } @@ -269,10 +269,10 @@ static void throttle_slew_limit() // Keeps outdated data out of our calculations static void reset_I(void) { - g.pidNavRoll.reset_I(); - g.pidNavPitchAirspeed.reset_I(); - g.pidNavPitchAltitude.reset_I(); - g.pidTeThrottle.reset_I(); + g.pidNavRoll.reset_I(); + g.pidNavPitchAirspeed.reset_I(); + g.pidNavPitchAltitude.reset_I(); + g.pidTeThrottle.reset_I(); g.pidWheelSteer.reset_I(); // g.pidAltitudeThrottle.reset_I(); } @@ -282,163 +282,163 @@ static void reset_I(void) *****************************************/ static void set_servos(void) { - int16_t flapSpeedSource = 0; + int16_t flapSpeedSource = 0; - // vectorize the rc channels - RC_Channel_aux* rc_array[NUM_CHANNELS]; - rc_array[CH_1] = NULL; - rc_array[CH_2] = NULL; - rc_array[CH_3] = NULL; - rc_array[CH_4] = NULL; - rc_array[CH_5] = &g.rc_5; - rc_array[CH_6] = &g.rc_6; - rc_array[CH_7] = &g.rc_7; - rc_array[CH_8] = &g.rc_8; + // vectorize the rc channels + RC_Channel_aux* rc_array[NUM_CHANNELS]; + rc_array[CH_1] = NULL; + rc_array[CH_2] = NULL; + rc_array[CH_3] = NULL; + rc_array[CH_4] = NULL; + rc_array[CH_5] = &g.rc_5; + rc_array[CH_6] = &g.rc_6; + rc_array[CH_7] = &g.rc_7; + rc_array[CH_8] = &g.rc_8; - if(control_mode == MANUAL){ - // do a direct pass through of radio values - if (g.mix_mode == 0){ - g.channel_roll.radio_out = g.channel_roll.radio_in; - g.channel_pitch.radio_out = g.channel_pitch.radio_in; - } else { - g.channel_roll.radio_out = APM_RC.InputCh(CH_ROLL); - g.channel_pitch.radio_out = APM_RC.InputCh(CH_PITCH); - } - g.channel_throttle.radio_out = g.channel_throttle.radio_in; - g.channel_rudder.radio_out = g.channel_rudder.radio_in; - // FIXME To me it does not make sense to control the aileron using radio_in in manual mode - // Doug could you please take a look at this ? - if (g_rc_function[RC_Channel_aux::k_aileron]) { - if (g_rc_function[RC_Channel_aux::k_aileron] != rc_array[g.flight_mode_channel-1]) { - g_rc_function[RC_Channel_aux::k_aileron]->radio_out = g_rc_function[RC_Channel_aux::k_aileron]->radio_in; - } - } - // only use radio_in if the channel is not used as flight_mode_channel - if (g_rc_function[RC_Channel_aux::k_flap_auto]) { - if (g_rc_function[RC_Channel_aux::k_flap_auto] != rc_array[g.flight_mode_channel-1]) { - g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_in; - } else { - g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_trim; - } - } - } else { - if (g.mix_mode == 0) { - g.channel_roll.calc_pwm(); - g.channel_pitch.calc_pwm(); - if (g_rc_function[RC_Channel_aux::k_aileron]) { - g_rc_function[RC_Channel_aux::k_aileron]->servo_out = g.channel_roll.servo_out; - g_rc_function[RC_Channel_aux::k_aileron]->calc_pwm(); - } + if(control_mode == MANUAL) { + // do a direct pass through of radio values + if (g.mix_mode == 0) { + g.channel_roll.radio_out = g.channel_roll.radio_in; + g.channel_pitch.radio_out = g.channel_pitch.radio_in; + } else { + g.channel_roll.radio_out = APM_RC.InputCh(CH_ROLL); + g.channel_pitch.radio_out = APM_RC.InputCh(CH_PITCH); + } + g.channel_throttle.radio_out = g.channel_throttle.radio_in; + g.channel_rudder.radio_out = g.channel_rudder.radio_in; + // FIXME To me it does not make sense to control the aileron using radio_in in manual mode + // Doug could you please take a look at this ? + if (g_rc_function[RC_Channel_aux::k_aileron]) { + if (g_rc_function[RC_Channel_aux::k_aileron] != rc_array[g.flight_mode_channel-1]) { + g_rc_function[RC_Channel_aux::k_aileron]->radio_out = g_rc_function[RC_Channel_aux::k_aileron]->radio_in; + } + } + // only use radio_in if the channel is not used as flight_mode_channel + if (g_rc_function[RC_Channel_aux::k_flap_auto]) { + if (g_rc_function[RC_Channel_aux::k_flap_auto] != rc_array[g.flight_mode_channel-1]) { + g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_in; + } else { + g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_trim; + } + } + } else { + if (g.mix_mode == 0) { + g.channel_roll.calc_pwm(); + g.channel_pitch.calc_pwm(); + if (g_rc_function[RC_Channel_aux::k_aileron]) { + g_rc_function[RC_Channel_aux::k_aileron]->servo_out = g.channel_roll.servo_out; + g_rc_function[RC_Channel_aux::k_aileron]->calc_pwm(); + } - }else{ - /*Elevon mode*/ - float ch1; - float ch2; - ch1 = g.channel_pitch.servo_out - (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out); - ch2 = g.channel_pitch.servo_out + (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out); - g.channel_roll.radio_out = elevon1_trim + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX)); - g.channel_pitch.radio_out = elevon2_trim + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX)); - } - g.channel_rudder.calc_pwm(); + }else{ + /*Elevon mode*/ + float ch1; + float ch2; + ch1 = g.channel_pitch.servo_out - (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out); + ch2 = g.channel_pitch.servo_out + (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out); + g.channel_roll.radio_out = elevon1_trim + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX)); + g.channel_pitch.radio_out = elevon2_trim + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX)); + } + g.channel_rudder.calc_pwm(); - #if THROTTLE_OUT == 0 - g.channel_throttle.servo_out = 0; - #else - // convert 0 to 100% into PWM - g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); +#if THROTTLE_OUT == 0 + g.channel_throttle.servo_out = 0; +#else + // convert 0 to 100% into PWM + g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); - // We want to supress the throttle if we think we are on the ground and in an autopilot controlled throttle mode. - /* Disable throttle if following conditions are met: - 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher - AND - 2 - Our reported altitude is within 10 meters of the home altitude. - 3 - Our reported speed is under 5 meters per second. - 4 - We are not performing a takeoff in Auto mode - OR - 5 - Home location is not set - */ - if ( - (control_mode == CIRCLE || control_mode >= FLY_BY_WIRE_B) && - (labs(home.alt - current_loc.alt) < 1000) && - ((airspeed.use()? airspeed.get_airspeed_cm() : g_gps->ground_speed) < 500 ) && - !(control_mode==AUTO && takeoff_complete == false) - ) { - g.channel_throttle.servo_out = 0; - g.channel_throttle.calc_pwm(); - } + // We want to supress the throttle if we think we are on the ground and in an autopilot controlled throttle mode. + /* Disable throttle if following conditions are met: + * 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher + * AND + * 2 - Our reported altitude is within 10 meters of the home altitude. + * 3 - Our reported speed is under 5 meters per second. + * 4 - We are not performing a takeoff in Auto mode + * OR + * 5 - Home location is not set + */ + if ( + (control_mode == CIRCLE || control_mode >= FLY_BY_WIRE_B) && + (labs(home.alt - current_loc.alt) < 1000) && + ((airspeed.use() ? airspeed.get_airspeed_cm() : g_gps->ground_speed) < 500 ) && + !(control_mode==AUTO && takeoff_complete == false) + ) { + g.channel_throttle.servo_out = 0; + g.channel_throttle.calc_pwm(); + } - #endif +#endif - g.channel_throttle.calc_pwm(); + g.channel_throttle.calc_pwm(); if (control_mode >= FLY_BY_WIRE_B) { /* only do throttle slew limiting in modes where throttle - control is automatic */ + * control is automatic */ throttle_slew_limit(); } - } + } - // Auto flap deployment - if (g_rc_function[RC_Channel_aux::k_flap_auto] != NULL) { - if(control_mode < FLY_BY_WIRE_B) { - // only use radio_in if the channel is not used as flight_mode_channel - if (g_rc_function[RC_Channel_aux::k_flap_auto] != rc_array[g.flight_mode_channel-1]) { - g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_in; - } else { - g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_trim; - } - } else if (control_mode >= FLY_BY_WIRE_B) { + // Auto flap deployment + if (g_rc_function[RC_Channel_aux::k_flap_auto] != NULL) { + if(control_mode < FLY_BY_WIRE_B) { + // only use radio_in if the channel is not used as flight_mode_channel + if (g_rc_function[RC_Channel_aux::k_flap_auto] != rc_array[g.flight_mode_channel-1]) { + g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_in; + } else { + g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_trim; + } + } else if (control_mode >= FLY_BY_WIRE_B) { // FIXME: use target_airspeed in both FBW_B and g.airspeed_enabled cases - Doug? - if (control_mode == FLY_BY_WIRE_B) { - flapSpeedSource = target_airspeed_cm * 0.01; - } else if (airspeed.use()) { - flapSpeedSource = g.airspeed_cruise_cm * 0.01; - } else { - flapSpeedSource = g.throttle_cruise; - } - if ( g.flap_1_speed != 0 && flapSpeedSource > g.flap_1_speed) { - g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = 0; - } else if (g.flap_2_speed != 0 && flapSpeedSource > g.flap_2_speed) { - g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = g.flap_1_percent; - } else { - g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = g.flap_2_percent; - } - g_rc_function[RC_Channel_aux::k_flap_auto]->calc_pwm(); - } - } + if (control_mode == FLY_BY_WIRE_B) { + flapSpeedSource = target_airspeed_cm * 0.01; + } else if (airspeed.use()) { + flapSpeedSource = g.airspeed_cruise_cm * 0.01; + } else { + flapSpeedSource = g.throttle_cruise; + } + if ( g.flap_1_speed != 0 && flapSpeedSource > g.flap_1_speed) { + g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = 0; + } else if (g.flap_2_speed != 0 && flapSpeedSource > g.flap_2_speed) { + g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = g.flap_1_percent; + } else { + g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = g.flap_2_percent; + } + g_rc_function[RC_Channel_aux::k_flap_auto]->calc_pwm(); + } + } #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS - // send values to the PWM timers for output - // ---------------------------------------- - APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos - APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos - APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos - APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos - // Route configurable aux. functions to their respective servos - g.rc_5.output_ch(CH_5); - g.rc_6.output_ch(CH_6); - g.rc_7.output_ch(CH_7); - g.rc_8.output_ch(CH_8); -# if CONFIG_APM_HARDWARE != APM_HARDWARE_APM1 - g.rc_9.output_ch(CH_9); - g.rc_10.output_ch(CH_10); - g.rc_11.output_ch(CH_11); -# endif + // send values to the PWM timers for output + // ---------------------------------------- + APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos + APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos + APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos + APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos + // Route configurable aux. functions to their respective servos + g.rc_5.output_ch(CH_5); + g.rc_6.output_ch(CH_6); + g.rc_7.output_ch(CH_7); + g.rc_8.output_ch(CH_8); + # if CONFIG_APM_HARDWARE != APM_HARDWARE_APM1 + g.rc_9.output_ch(CH_9); + g.rc_10.output_ch(CH_10); + g.rc_11.output_ch(CH_11); + # endif #endif } static void demo_servos(byte i) { - while(i > 0){ - gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); + while(i > 0) { + gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS - APM_RC.OutputCh(1, 1400); - mavlink_delay(400); - APM_RC.OutputCh(1, 1600); - mavlink_delay(200); - APM_RC.OutputCh(1, 1500); + APM_RC.OutputCh(1, 1400); + mavlink_delay(400); + APM_RC.OutputCh(1, 1600); + mavlink_delay(200); + APM_RC.OutputCh(1, 1500); #endif - mavlink_delay(400); - i--; - } + mavlink_delay(400); + i--; + } }