mirror of https://github.com/ArduPilot/ardupilot
AP_WheelEncoder: move to using HAL's attach_interrupt methods
AP_WheelEncoder: add error reporting for attaching of interrupts AP_WheelEncoder: use detach_interrupt method AP_WheelEncoder: correct initialisation of wheelencoder instances AP_WheelEncoder: make update_phase_and_error_count non-static AP_WheelEncoder: use (uint8_t)-1 in place of 255
This commit is contained in:
parent
20027bad17
commit
d366842d15
|
@ -152,20 +152,20 @@ void AP_WheelEncoder::init(void)
|
|||
return;
|
||||
}
|
||||
for (uint8_t i=0; i<WHEELENCODER_MAX_INSTANCES; i++) {
|
||||
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
||||
uint8_t type = _type[num_instances];
|
||||
uint8_t instance = num_instances;
|
||||
|
||||
if (type == WheelEncoder_TYPE_QUADRATURE) {
|
||||
state[instance].instance = instance;
|
||||
drivers[instance] = new AP_WheelEncoder_Quadrature(*this, instance, state[instance]);
|
||||
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN || CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
|
||||
switch ((WheelEncoder_Type)_type[i].get()) {
|
||||
case WheelEncoder_TYPE_QUADRATURE:
|
||||
drivers[i] = new AP_WheelEncoder_Quadrature(*this, i, state[i]);
|
||||
break;
|
||||
case WheelEncoder_TYPE_NONE:
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (drivers[i] != nullptr) {
|
||||
// we loaded a driver for this instance, so it must be
|
||||
// present (although it may not be healthy)
|
||||
num_instances = i+1;
|
||||
num_instances = i+1; // num_instances is a high-water-mark
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -39,7 +39,7 @@ public:
|
|||
AP_WheelEncoder &operator=(const AP_WheelEncoder&) = delete;
|
||||
|
||||
// WheelEncoder driver types
|
||||
enum WheelEncoder_Type {
|
||||
enum WheelEncoder_Type : uint8_t {
|
||||
WheelEncoder_TYPE_NONE = 0,
|
||||
WheelEncoder_TYPE_QUADRATURE = 1
|
||||
};
|
||||
|
|
|
@ -23,6 +23,7 @@ AP_WheelEncoder_Backend::AP_WheelEncoder_Backend(AP_WheelEncoder &frontend, uint
|
|||
_frontend(frontend),
|
||||
_state(state)
|
||||
{
|
||||
state.instance = instance;
|
||||
}
|
||||
|
||||
// return pin. returns -1 if pin is not defined for this instance
|
||||
|
|
|
@ -15,14 +15,11 @@
|
|||
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
|
||||
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
||||
#include <AP_BoardConfig/AP_BoardConfig.h>
|
||||
#include <board_config.h>
|
||||
#include "WheelEncoder_Quadrature.h"
|
||||
#include <stdio.h>
|
||||
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
AP_WheelEncoder_Quadrature::IrqState AP_WheelEncoder_Quadrature::irq_state[WHEELENCODER_MAX_INSTANCES];
|
||||
|
||||
// constructor
|
||||
AP_WheelEncoder_Quadrature::AP_WheelEncoder_Quadrature(AP_WheelEncoder &frontend, uint8_t instance, AP_WheelEncoder::WheelEncoder_State &state) :
|
||||
|
@ -30,107 +27,63 @@ AP_WheelEncoder_Quadrature::AP_WheelEncoder_Quadrature(AP_WheelEncoder &frontend
|
|||
{
|
||||
}
|
||||
|
||||
void AP_WheelEncoder_Quadrature::update(void)
|
||||
// check if pin has changed and initialise gpio event callback
|
||||
void AP_WheelEncoder_Quadrature::update_pin(uint8_t &pin,
|
||||
uint8_t new_pin,
|
||||
uint8_t &pin_value)
|
||||
{
|
||||
uint8_t instance = _state.instance;
|
||||
|
||||
// check if pin a has changed and initialise gpio event callback
|
||||
if (last_pin_a != get_pin_a()) {
|
||||
last_pin_a = get_pin_a();
|
||||
|
||||
// remove old gpio event callback if present
|
||||
if (irq_state[instance].last_gpio_a != 0) {
|
||||
stm32_gpiosetevent(irq_state[instance].last_gpio_a, false, false, false, nullptr);
|
||||
irq_state[instance].last_gpio_a = 0;
|
||||
}
|
||||
|
||||
// install interrupt handler on rising or falling edge of gpio for pin a
|
||||
irq_state[instance].last_gpio_a = get_gpio(last_pin_a);
|
||||
if (irq_state[instance].last_gpio_a != 0) {
|
||||
stm32_gpiosetevent(irq_state[instance].last_gpio_a, true, true, false, _state.instance==0 ? irq_handler0_pina : irq_handler1_pina);
|
||||
}
|
||||
|
||||
if (new_pin == pin) {
|
||||
// no change
|
||||
return;
|
||||
}
|
||||
|
||||
// check if pin b has changed and initialise gpio event callback
|
||||
if (last_pin_b != get_pin_b()) {
|
||||
last_pin_b = get_pin_b();
|
||||
// remove old gpio event callback if present
|
||||
if (pin != (uint8_t)-1 &&
|
||||
!hal.gpio->detach_interrupt(pin)) {
|
||||
gcs().send_text(MAV_SEVERITY_WARNING, "WEnc: Failed to detach from pin %u", pin);
|
||||
// ignore this failure or the user may be stuck
|
||||
}
|
||||
|
||||
// remove old gpio event callback if present
|
||||
if (irq_state[instance].last_gpio_b != 0) {
|
||||
stm32_gpiosetevent(irq_state[instance].last_gpio_b, false, false, false, nullptr);
|
||||
irq_state[instance].last_gpio_b = 0;
|
||||
pin = new_pin;
|
||||
|
||||
// install interrupt handler on rising or falling edge of gpio for pin a
|
||||
if (new_pin != (uint8_t)-1) {
|
||||
if (!hal.gpio->attach_interrupt(
|
||||
pin,
|
||||
FUNCTOR_BIND_MEMBER(&AP_WheelEncoder_Quadrature::irq_handler,
|
||||
void,
|
||||
uint8_t,
|
||||
bool,
|
||||
uint32_t),
|
||||
AP_HAL::GPIO::INTERRUPT_BOTH)) {
|
||||
gcs().send_text(MAV_SEVERITY_WARNING, "WEnc: Failed to attach to pin %u", pin);
|
||||
}
|
||||
pin_value = hal.gpio->read(pin);
|
||||
}
|
||||
}
|
||||
|
||||
// install interrupt handler on rising or falling edge of gpio for pin b
|
||||
irq_state[instance].last_gpio_b = get_gpio(last_pin_b);
|
||||
if (irq_state[instance].last_gpio_b != 0) {
|
||||
stm32_gpiosetevent(irq_state[instance].last_gpio_b, true, true, false, _state.instance==0 ? irq_handler0_pinb : irq_handler1_pinb);
|
||||
}
|
||||
void AP_WheelEncoder_Quadrature::update(void)
|
||||
{
|
||||
update_pin(last_pin_a, get_pin_a(), last_pin_a_value);
|
||||
update_pin(last_pin_b, get_pin_b(), last_pin_b_value);
|
||||
|
||||
static uint32_t last_warn_ms = 0;
|
||||
const uint32_t now = AP_HAL::millis();
|
||||
if (now - last_warn_ms > 1000) {
|
||||
last_warn_ms = now;
|
||||
}
|
||||
|
||||
// disable interrupts to prevent race with irq_handler
|
||||
irqstate_t istate = irqsave();
|
||||
void *irqstate = hal.scheduler->disable_interrupts_save();
|
||||
|
||||
// copy distance and error count so it is accessible to front end
|
||||
_state.distance_count = irq_state[instance].distance_count;
|
||||
_state.total_count = irq_state[instance].total_count;
|
||||
_state.error_count = irq_state[instance].error_count;
|
||||
_state.last_reading_ms = irq_state[instance].last_reading_ms;
|
||||
_state.distance_count = irq_state.distance_count;
|
||||
_state.total_count = irq_state.total_count;
|
||||
_state.error_count = irq_state.error_count;
|
||||
_state.last_reading_ms = irq_state.last_reading_ms;
|
||||
|
||||
// restore interrupts
|
||||
irqrestore(istate);
|
||||
}
|
||||
|
||||
// interrupt handler for instance 0, pin a
|
||||
int AP_WheelEncoder_Quadrature::irq_handler0_pina(int irq, void *context)
|
||||
{
|
||||
irq_handler(0, true);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// interrupt handler for instance 0, pin b
|
||||
int AP_WheelEncoder_Quadrature::irq_handler0_pinb(int irq, void *context)
|
||||
{
|
||||
irq_handler(0, false);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// interrupt handler for instance 1, pin a
|
||||
int AP_WheelEncoder_Quadrature::irq_handler1_pina(int irq, void *context)
|
||||
{
|
||||
irq_handler(1, true);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// interrupt handler for instance 1, pin b
|
||||
int AP_WheelEncoder_Quadrature::irq_handler1_pinb(int irq, void *context)
|
||||
{
|
||||
irq_handler(1, false);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// get gpio id from pin number
|
||||
uint32_t AP_WheelEncoder_Quadrature::get_gpio(uint8_t pin_number)
|
||||
{
|
||||
#ifdef GPIO_GPIO0_INPUT
|
||||
switch (pin_number) {
|
||||
case 50:
|
||||
return GPIO_GPIO0_INPUT;
|
||||
case 51:
|
||||
return GPIO_GPIO1_INPUT;
|
||||
case 52:
|
||||
return GPIO_GPIO2_INPUT;
|
||||
case 53:
|
||||
return GPIO_GPIO3_INPUT;
|
||||
case 54:
|
||||
return GPIO_GPIO4_INPUT;
|
||||
case 55:
|
||||
return GPIO_GPIO5_INPUT;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
hal.scheduler->restore_interrupts(irqstate);
|
||||
}
|
||||
|
||||
// convert pin a and pin b state to a wheel encoder phase
|
||||
|
@ -156,43 +109,45 @@ uint8_t AP_WheelEncoder_Quadrature::pin_ab_to_phase(bool pin_a, bool pin_b)
|
|||
return (uint8_t)pin_a << 1 | (uint8_t)pin_b;
|
||||
}
|
||||
|
||||
void AP_WheelEncoder_Quadrature::update_phase_and_error_count(bool pin_a_now, bool pin_b_now, uint8_t &phase, int32_t &distance_count, uint32_t &total_count, uint32_t &error_count)
|
||||
void AP_WheelEncoder_Quadrature::update_phase_and_error_count()
|
||||
{
|
||||
// convert pin state before and after to phases
|
||||
uint8_t phase_after = pin_ab_to_phase(pin_a_now, pin_b_now);
|
||||
uint8_t phase_after = pin_ab_to_phase(last_pin_a_value, last_pin_b_value);
|
||||
|
||||
// look for invalid changes
|
||||
uint8_t step_forward = phase < 3 ? phase+1 : 0;
|
||||
uint8_t step_back = phase > 0 ? phase-1 : 3;
|
||||
uint8_t step_forward = irq_state.phase < 3 ? irq_state.phase+1 : 0;
|
||||
uint8_t step_back = irq_state.phase > 0 ? irq_state.phase-1 : 3;
|
||||
if (phase_after == step_forward) {
|
||||
phase = phase_after;
|
||||
distance_count++;
|
||||
irq_state.phase = phase_after;
|
||||
irq_state.distance_count++;
|
||||
} else if (phase_after == step_back) {
|
||||
phase = phase_after;
|
||||
distance_count--;
|
||||
irq_state.phase = phase_after;
|
||||
irq_state.distance_count--;
|
||||
} else {
|
||||
error_count++;
|
||||
irq_state.error_count++;
|
||||
}
|
||||
total_count++;
|
||||
irq_state.total_count++;
|
||||
}
|
||||
|
||||
// combined irq handler
|
||||
void AP_WheelEncoder_Quadrature::irq_handler(uint8_t instance, bool pin_a)
|
||||
void AP_WheelEncoder_Quadrature::irq_handler(uint8_t pin,
|
||||
bool pin_value,
|
||||
uint32_t timestamp)
|
||||
{
|
||||
// sanity check
|
||||
if (irq_state[instance].last_gpio_a == 0 || irq_state[instance].last_gpio_b == 0) {
|
||||
if (last_pin_a == 0 || last_pin_b == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// read value of pin-a and pin-b
|
||||
bool pin_a_high = stm32_gpioread(irq_state[instance].last_gpio_a);
|
||||
bool pin_b_high = stm32_gpioread(irq_state[instance].last_gpio_b);
|
||||
|
||||
// update distance and error counts
|
||||
update_phase_and_error_count(pin_a_high, pin_b_high, irq_state[instance].phase, irq_state[instance].distance_count, irq_state[instance].total_count, irq_state[instance].error_count);
|
||||
if (pin == last_pin_a) {
|
||||
last_pin_a_value = pin_value;
|
||||
} else if (pin == last_pin_b) {
|
||||
last_pin_b_value = pin_value;
|
||||
} else {
|
||||
return;
|
||||
};
|
||||
update_phase_and_error_count();
|
||||
|
||||
// record update time
|
||||
irq_state[instance].last_reading_ms = AP_HAL::millis();
|
||||
irq_state.last_reading_ms = timestamp;
|
||||
}
|
||||
|
||||
#endif // CONFIG_HAL_BOARD
|
||||
|
|
|
@ -30,34 +30,30 @@ public:
|
|||
|
||||
private:
|
||||
|
||||
// gpio interrupt handlers
|
||||
static int irq_handler0_pina(int irq, void *context); // instance 0's pin_a handler
|
||||
static int irq_handler0_pinb(int irq, void *context); // instance 0's pin_b handler
|
||||
static int irq_handler1_pina(int irq, void *context); // instance 1's pin_a handler
|
||||
static int irq_handler1_pinb(int irq, void *context); // instance 1's pin_b handler
|
||||
static void irq_handler(uint8_t instance, bool pin_a); // combined irq handler
|
||||
// check if pin has changed and initialise gpio event callback
|
||||
void update_pin(uint8_t &pin, uint8_t new_pin, uint8_t &pin_value);
|
||||
|
||||
// get gpio id from pin number
|
||||
static uint32_t get_gpio(uint8_t pin_number);
|
||||
// gpio interrupt handlers
|
||||
void irq_handler(uint8_t pin, bool pin_value, uint32_t timestamp); // combined irq handler
|
||||
|
||||
// convert pin a and b status to phase
|
||||
static uint8_t pin_ab_to_phase(bool pin_a, bool pin_b);
|
||||
|
||||
// update phase, distance_count and error count using pin a and b's latest state
|
||||
static void update_phase_and_error_count(bool pin_a_now, bool pin_b_now, uint8_t &phase, int32_t &distance_count, uint32_t &total_count, uint32_t &error_count);
|
||||
void update_phase_and_error_count();
|
||||
|
||||
struct IrqState {
|
||||
uint32_t last_gpio_a; // gpio used for pin a
|
||||
uint32_t last_gpio_b; // gpio used for pin b
|
||||
uint8_t phase; // current phase of encoder (from 0 to 3)
|
||||
int32_t distance_count; // distance measured by cumulative steps forward or backwards
|
||||
uint32_t total_count; // total number of successful readings from sensor (used for sensor quality calcs)
|
||||
uint32_t error_count; // total number of errors reading from sensor (used for sensor quality calcs)
|
||||
uint32_t last_reading_ms; // system time of last update from encoder
|
||||
};
|
||||
static struct IrqState irq_state[WHEELENCODER_MAX_INSTANCES];
|
||||
} irq_state;
|
||||
|
||||
// private members
|
||||
uint8_t last_pin_a;
|
||||
uint8_t last_pin_b;
|
||||
uint8_t last_pin_a = -1;
|
||||
uint8_t last_pin_b = -1;
|
||||
|
||||
uint8_t last_pin_a_value;
|
||||
uint8_t last_pin_b_value;
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue