AP_SmallEKF: replace incorrect quaternion rotations with library call

This commit is contained in:
Jonathan Challinger 2015-09-21 16:53:09 -07:00 committed by Paul Riseborough
parent 0592bd4e6f
commit d2b103b323

View File

@ -122,28 +122,9 @@ void SmallEKF::predictStates()
gimDelAngCorrected = gSense.delAng - state.delAngBias - (gimDelAngPrev % gimDelAngCorrected) * 8.333333e-2f; gimDelAngCorrected = gSense.delAng - state.delAngBias - (gimDelAngPrev % gimDelAngCorrected) * 8.333333e-2f;
gimDelAngPrev = gSense.delAng - state.delAngBias; gimDelAngPrev = gSense.delAng - state.delAngBias;
// convert the rotation vector to its equivalent quaternion
float rotationMag = gimDelAngCorrected.length();
Quaternion deltaQuat;
if (rotationMag < 1e-6f)
{
deltaQuat[0] = 1.0f;
deltaQuat[1] = 0.0f;
deltaQuat[2] = 0.0f;
deltaQuat[3] = 0.0f;
}
else
{
deltaQuat[0] = cosf(0.5f * rotationMag);
float rotScaler = (sinf(0.5f * rotationMag)) / rotationMag;
deltaQuat[1] = gimDelAngCorrected.x * rotScaler;
deltaQuat[2] = gimDelAngCorrected.y * rotScaler;
deltaQuat[3] = gimDelAngCorrected.z * rotScaler;
}
// update the quaternions by rotating from the previous attitude through // update the quaternions by rotating from the previous attitude through
// the delta angle rotation quaternion // the delta angle rotation quaternion
state.quat *= deltaQuat; state.quat.rotate(gimDelAngCorrected);
// normalise the quaternions and update the quaternion states // normalise the quaternions and update the quaternion states
state.quat.normalize(); state.quat.normalize();
@ -595,25 +576,12 @@ void SmallEKF::fuseVelocity(bool yawInit)
// Store tilt error estimate for external monitoring // Store tilt error estimate for external monitoring
angErrVec = angErrVec + state.angErr; angErrVec = angErrVec + state.angErr;
// the first 3 states represent the angular misalignment vector. This is // the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion
// is used to correct the estimated quaternion // Bring the quaternion state estimate back to 'truth' by adding the error
// Convert the error rotation vector to its equivalent quaternion state.quat.rotate(state.angErr);
// truth = estimate + error
float rotationMag = state.angErr.length();
if (rotationMag > 1e-6f) {
Quaternion deltaQuat;
float temp = sinf(0.5f*rotationMag) / rotationMag;
deltaQuat[0] = cosf(0.5f*rotationMag);
deltaQuat[1] = state.angErr.x*temp;
deltaQuat[2] = state.angErr.y*temp;
deltaQuat[3] = state.angErr.z*temp;
// Update the quaternion states by rotating from the previous attitude through the error quaternion
state.quat *= deltaQuat;
// re-normalise the quaternion // re-normalise the quaternion
state.quat.normalize(); state.quat.normalize();
}
// Update the covariance // Update the covariance
for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) { for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) {
@ -773,22 +741,11 @@ void SmallEKF::fuseCompass()
} }
// the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion // the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion
float rotationMag = state.angErr.length();
if (rotationMag > 1e-6f) {
// Convert the error rotation vector to its equivalent quaternion
Quaternion deltaQuat;
float temp = sinf(0.5f*rotationMag) / rotationMag;
deltaQuat[0] = cosf(0.5f*rotationMag);
deltaQuat[1] = state.angErr.x*temp;
deltaQuat[2] = state.angErr.y*temp;
deltaQuat[3] = state.angErr.z*temp;
// Bring the quaternion state estimate back to 'truth' by adding the error // Bring the quaternion state estimate back to 'truth' by adding the error
state.quat *= deltaQuat; state.quat.rotate(state.angErr);
// re-normalise the quaternion // re-normalise the quaternion
state.quat.normalize(); state.quat.normalize();
}
// correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero // correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
float HP[9]; float HP[9];
@ -819,22 +776,11 @@ void SmallEKF::alignHeading()
Vector3f angleCorrection = Tsn.transposed()*deltaRotNED; Vector3f angleCorrection = Tsn.transposed()*deltaRotNED;
// apply the correction to the quaternion state // apply the correction to the quaternion state
float rotationMag = deltaRotNED.length();
if (rotationMag > 1e-6f) {
// Convert the error rotation vector to its equivalent quaternion
Quaternion deltaQuat;
float temp = sinf(0.5f*rotationMag) / rotationMag;
deltaQuat[0] = cosf(0.5f*rotationMag);
deltaQuat[1] = angleCorrection.x*temp;
deltaQuat[2] = angleCorrection.y*temp;
deltaQuat[3] = angleCorrection.z*temp;
// Bring the quaternion state estimate back to 'truth' by adding the error // Bring the quaternion state estimate back to 'truth' by adding the error
state.quat *= deltaQuat; state.quat.rotate(angleCorrection);
// re-normalise the quaternion // re-normalize the quaternion
state.quat.normalize(); state.quat.normalize();
}
} }