mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
AP_SmallEKF: replace incorrect quaternion rotations with library call
This commit is contained in:
parent
0592bd4e6f
commit
d2b103b323
@ -122,28 +122,9 @@ void SmallEKF::predictStates()
|
||||
gimDelAngCorrected = gSense.delAng - state.delAngBias - (gimDelAngPrev % gimDelAngCorrected) * 8.333333e-2f;
|
||||
gimDelAngPrev = gSense.delAng - state.delAngBias;
|
||||
|
||||
// convert the rotation vector to its equivalent quaternion
|
||||
float rotationMag = gimDelAngCorrected.length();
|
||||
Quaternion deltaQuat;
|
||||
if (rotationMag < 1e-6f)
|
||||
{
|
||||
deltaQuat[0] = 1.0f;
|
||||
deltaQuat[1] = 0.0f;
|
||||
deltaQuat[2] = 0.0f;
|
||||
deltaQuat[3] = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
deltaQuat[0] = cosf(0.5f * rotationMag);
|
||||
float rotScaler = (sinf(0.5f * rotationMag)) / rotationMag;
|
||||
deltaQuat[1] = gimDelAngCorrected.x * rotScaler;
|
||||
deltaQuat[2] = gimDelAngCorrected.y * rotScaler;
|
||||
deltaQuat[3] = gimDelAngCorrected.z * rotScaler;
|
||||
}
|
||||
|
||||
// update the quaternions by rotating from the previous attitude through
|
||||
// the delta angle rotation quaternion
|
||||
state.quat *= deltaQuat;
|
||||
state.quat.rotate(gimDelAngCorrected);
|
||||
|
||||
// normalise the quaternions and update the quaternion states
|
||||
state.quat.normalize();
|
||||
@ -595,25 +576,12 @@ void SmallEKF::fuseVelocity(bool yawInit)
|
||||
// Store tilt error estimate for external monitoring
|
||||
angErrVec = angErrVec + state.angErr;
|
||||
|
||||
// the first 3 states represent the angular misalignment vector. This is
|
||||
// is used to correct the estimated quaternion
|
||||
// Convert the error rotation vector to its equivalent quaternion
|
||||
// truth = estimate + error
|
||||
float rotationMag = state.angErr.length();
|
||||
if (rotationMag > 1e-6f) {
|
||||
Quaternion deltaQuat;
|
||||
float temp = sinf(0.5f*rotationMag) / rotationMag;
|
||||
deltaQuat[0] = cosf(0.5f*rotationMag);
|
||||
deltaQuat[1] = state.angErr.x*temp;
|
||||
deltaQuat[2] = state.angErr.y*temp;
|
||||
deltaQuat[3] = state.angErr.z*temp;
|
||||
// the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion
|
||||
// Bring the quaternion state estimate back to 'truth' by adding the error
|
||||
state.quat.rotate(state.angErr);
|
||||
|
||||
// Update the quaternion states by rotating from the previous attitude through the error quaternion
|
||||
state.quat *= deltaQuat;
|
||||
|
||||
// re-normalise the quaternion
|
||||
state.quat.normalize();
|
||||
}
|
||||
// re-normalise the quaternion
|
||||
state.quat.normalize();
|
||||
|
||||
// Update the covariance
|
||||
for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) {
|
||||
@ -773,22 +741,11 @@ void SmallEKF::fuseCompass()
|
||||
}
|
||||
|
||||
// the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion
|
||||
float rotationMag = state.angErr.length();
|
||||
if (rotationMag > 1e-6f) {
|
||||
// Convert the error rotation vector to its equivalent quaternion
|
||||
Quaternion deltaQuat;
|
||||
float temp = sinf(0.5f*rotationMag) / rotationMag;
|
||||
deltaQuat[0] = cosf(0.5f*rotationMag);
|
||||
deltaQuat[1] = state.angErr.x*temp;
|
||||
deltaQuat[2] = state.angErr.y*temp;
|
||||
deltaQuat[3] = state.angErr.z*temp;
|
||||
// Bring the quaternion state estimate back to 'truth' by adding the error
|
||||
state.quat.rotate(state.angErr);
|
||||
|
||||
// Bring the quaternion state estimate back to 'truth' by adding the error
|
||||
state.quat *= deltaQuat;
|
||||
|
||||
// re-normalise the quaternion
|
||||
state.quat.normalize();
|
||||
}
|
||||
// re-normalise the quaternion
|
||||
state.quat.normalize();
|
||||
|
||||
// correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
|
||||
float HP[9];
|
||||
@ -819,22 +776,11 @@ void SmallEKF::alignHeading()
|
||||
Vector3f angleCorrection = Tsn.transposed()*deltaRotNED;
|
||||
|
||||
// apply the correction to the quaternion state
|
||||
float rotationMag = deltaRotNED.length();
|
||||
if (rotationMag > 1e-6f) {
|
||||
// Convert the error rotation vector to its equivalent quaternion
|
||||
Quaternion deltaQuat;
|
||||
float temp = sinf(0.5f*rotationMag) / rotationMag;
|
||||
deltaQuat[0] = cosf(0.5f*rotationMag);
|
||||
deltaQuat[1] = angleCorrection.x*temp;
|
||||
deltaQuat[2] = angleCorrection.y*temp;
|
||||
deltaQuat[3] = angleCorrection.z*temp;
|
||||
// Bring the quaternion state estimate back to 'truth' by adding the error
|
||||
state.quat.rotate(angleCorrection);
|
||||
|
||||
// Bring the quaternion state estimate back to 'truth' by adding the error
|
||||
state.quat *= deltaQuat;
|
||||
|
||||
// re-normalise the quaternion
|
||||
state.quat.normalize();
|
||||
}
|
||||
// re-normalize the quaternion
|
||||
state.quat.normalize();
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user