mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-30 12:38:33 -04:00
AP_MotorsTri: stability patch in 0 to 1 range
This commit is contained in:
parent
80f77bc30b
commit
d0a7579fa0
@ -133,120 +133,141 @@ uint16_t AP_MotorsTri::get_motor_mask()
|
|||||||
(1U << AP_MOTORS_CH_TRI_YAW);
|
(1U << AP_MOTORS_CH_TRI_YAW);
|
||||||
}
|
}
|
||||||
|
|
||||||
// sends commands to the motors
|
// output_armed - sends commands to the motors
|
||||||
|
// includes new scaling stability patch
|
||||||
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
|
||||||
void AP_MotorsTri::output_armed_stabilizing()
|
void AP_MotorsTri::output_armed_stabilizing()
|
||||||
{
|
{
|
||||||
int16_t roll_pwm; // roll pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
|
float roll_thrust; // roll thrust input value, +/- 1.0
|
||||||
int16_t pitch_pwm; // pitch pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
|
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
||||||
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
|
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
||||||
int16_t yaw_radio_output; // final yaw pwm value sent to motors, typically ~1100-1900
|
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
|
||||||
int16_t out_min = _throttle_radio_min + _min_throttle;
|
float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing
|
||||||
int16_t out_max = _throttle_radio_max;
|
float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy
|
||||||
int16_t motor_out[AP_MOTORS_MOT_4+1];
|
float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
|
||||||
|
float rpy_low = 0.0f; // lowest motor value
|
||||||
|
float rpy_high = 0.0f; // highest motor value
|
||||||
|
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
|
||||||
|
float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0
|
||||||
|
|
||||||
// initialize limits flags
|
// apply voltage and air pressure compensation
|
||||||
limit.roll_pitch = false;
|
roll_thrust = get_roll_thrust() * get_compensation_gain();
|
||||||
limit.yaw = false;
|
pitch_thrust = get_pitch_thrust() * get_compensation_gain();
|
||||||
limit.throttle_lower = false;
|
yaw_thrust = get_yaw_thrust() * get_compensation_gain()*sinf(_pivot_angle_max); // we scale this so a thrust request of 1.0f will ask for full servo deflection at full rear throttle
|
||||||
limit.throttle_upper = false;
|
throttle_thrust = get_throttle() * get_compensation_gain();
|
||||||
|
float pivot_angle_request_max = asin(yaw_thrust);
|
||||||
|
float pivot_thrust_max = cosf(pivot_angle_request_max);
|
||||||
|
float thrust_max = 1.0f;
|
||||||
|
|
||||||
// Throttle is 0 to 1000 only
|
// sanity check throttle is above zero and below current limited throttle
|
||||||
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle);
|
if (throttle_thrust <= 0.0f) {
|
||||||
if (_throttle_control_input <= thr_in_min) {
|
throttle_thrust = 0.0f;
|
||||||
_throttle_control_input = thr_in_min;
|
|
||||||
limit.throttle_lower = true;
|
limit.throttle_lower = true;
|
||||||
}
|
}
|
||||||
if (_throttle_control_input >= _max_throttle) {
|
// convert throttle_max from 0~1000 to 0~1 range
|
||||||
_throttle_control_input = _max_throttle;
|
if (throttle_thrust >= _throttle_thrust_max) {
|
||||||
|
throttle_thrust = _throttle_thrust_max;
|
||||||
limit.throttle_upper = true;
|
limit.throttle_upper = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// tricopters limit throttle to 80%
|
throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix);
|
||||||
// To-Do: implement improved stability patch and remove this limit
|
|
||||||
if (_throttle_control_input > 800) {
|
// The following mix may be offer less coupling between axis but needs testing
|
||||||
_throttle_control_input = 800;
|
//_thrust_right = roll_thrust * -0.5f + pitch_thrust * 1.0f;
|
||||||
limit.throttle_upper = true;
|
//_thrust_left = roll_thrust * 0.5f + pitch_thrust * 1.0f;
|
||||||
|
//_thrust_rear = 0;
|
||||||
|
|
||||||
|
_thrust_right = roll_thrust * -0.5f + pitch_thrust * 0.5f;
|
||||||
|
_thrust_left = roll_thrust * 0.5f + pitch_thrust * 0.5f;
|
||||||
|
_thrust_rear = pitch_thrust * -0.5f;
|
||||||
|
|
||||||
|
// calculate roll and pitch for each motor
|
||||||
|
// set rpy_low and rpy_high to the lowest and highest values of the motors
|
||||||
|
|
||||||
|
// record lowest roll pitch command
|
||||||
|
rpy_low = MIN(_thrust_right,_thrust_left);
|
||||||
|
rpy_high = MAX(_thrust_right,_thrust_left);
|
||||||
|
if (rpy_low > _thrust_rear){
|
||||||
|
rpy_low = _thrust_rear;
|
||||||
|
}
|
||||||
|
// check to see if the rear motor will reach maximum thrust before the front two motors
|
||||||
|
if ((1.0f - rpy_high) > (pivot_thrust_max - _thrust_rear)){
|
||||||
|
thrust_max = pivot_thrust_max;
|
||||||
|
rpy_high = _thrust_rear;
|
||||||
}
|
}
|
||||||
|
|
||||||
roll_pwm = calc_roll_pwm();
|
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of:
|
||||||
pitch_pwm = calc_pitch_pwm();
|
// 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible room margin above the highest motor and below the lowest
|
||||||
throttle_radio_output = calc_throttle_radio_output();
|
// 2. the higher of:
|
||||||
yaw_radio_output = calc_yaw_radio_output();
|
// a) the pilot's throttle input
|
||||||
|
// b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle
|
||||||
|
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
|
||||||
|
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
|
||||||
|
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control)
|
||||||
|
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it
|
||||||
|
|
||||||
// if we are not sending a throttle output, we cut the motors
|
// check everything fits
|
||||||
if( is_zero(_throttle_control_input) ) {
|
throttle_thrust_best_rpy = MIN(0.5f*thrust_max - (rpy_low+rpy_high)/2.0, throttle_thrust_rpy_mix);
|
||||||
// range check spin_when_armed
|
if(is_zero(rpy_low)){
|
||||||
if (_spin_when_armed_ramped < 0) {
|
rpy_scale = 1.0f;
|
||||||
_spin_when_armed_ramped = 0;
|
} else {
|
||||||
}
|
rpy_scale = constrain_float(-throttle_thrust_best_rpy/rpy_low, 0.0f, 1.0f);
|
||||||
if (_spin_when_armed_ramped > _min_throttle) {
|
}
|
||||||
_spin_when_armed_ramped = _min_throttle;
|
|
||||||
}
|
|
||||||
motor_out[AP_MOTORS_MOT_1] = _throttle_radio_min + _spin_when_armed_ramped;
|
|
||||||
motor_out[AP_MOTORS_MOT_2] = _throttle_radio_min + _spin_when_armed_ramped;
|
|
||||||
motor_out[AP_MOTORS_MOT_4] = _throttle_radio_min + _spin_when_armed_ramped;
|
|
||||||
|
|
||||||
}else{
|
// calculate how close the motors can come to the desired throttle
|
||||||
int16_t roll_out = (float)(roll_pwm * 0.866f);
|
thr_adj = throttle_thrust - throttle_thrust_best_rpy;
|
||||||
int16_t pitch_out = pitch_pwm / 2;
|
if(rpy_scale < 1.0f){
|
||||||
|
// Full range is being used by roll, pitch, and yaw.
|
||||||
// check if throttle is below limit
|
limit.roll_pitch = true;
|
||||||
if (_throttle_control_input <= _min_throttle) {
|
if(thr_adj < 0.0f){
|
||||||
limit.throttle_lower = true;
|
limit.throttle_lower = true;
|
||||||
_throttle_control_input = _min_throttle;
|
}else if(thr_adj > 0.0f){
|
||||||
throttle_radio_output = calc_throttle_radio_output();
|
limit.throttle_upper = true;
|
||||||
}
|
}
|
||||||
|
thr_adj = 0.0f;
|
||||||
// TODO: set limits.roll_pitch and limits.yaw
|
}else{
|
||||||
|
if(thr_adj < -(throttle_thrust_best_rpy+rpy_low)){
|
||||||
//left front
|
// Throttle can't be reduced to desired value
|
||||||
motor_out[AP_MOTORS_MOT_2] = throttle_radio_output + roll_out + pitch_out;
|
thr_adj = -(throttle_thrust_best_rpy+rpy_low);
|
||||||
//right front
|
limit.throttle_lower = true;
|
||||||
motor_out[AP_MOTORS_MOT_1] = throttle_radio_output - roll_out + pitch_out;
|
}else if(thr_adj > thrust_max - (throttle_thrust_best_rpy+rpy_high)){
|
||||||
// rear
|
// Throttle can't be increased to desired value
|
||||||
motor_out[AP_MOTORS_MOT_4] = throttle_radio_output - pitch_pwm;
|
thr_adj = thrust_max - (throttle_thrust_best_rpy+rpy_high);
|
||||||
|
limit.throttle_upper = true;
|
||||||
// Tridge's stability patch
|
|
||||||
if(motor_out[AP_MOTORS_MOT_1] > out_max) {
|
|
||||||
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max);
|
|
||||||
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max);
|
|
||||||
motor_out[AP_MOTORS_MOT_1] = out_max;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if(motor_out[AP_MOTORS_MOT_2] > out_max) {
|
|
||||||
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max);
|
|
||||||
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max);
|
|
||||||
motor_out[AP_MOTORS_MOT_2] = out_max;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(motor_out[AP_MOTORS_MOT_4] > out_max) {
|
|
||||||
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max);
|
|
||||||
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max);
|
|
||||||
motor_out[AP_MOTORS_MOT_4] = out_max;
|
|
||||||
}
|
|
||||||
|
|
||||||
// adjust for thrust curve and voltage scaling
|
|
||||||
motor_out[AP_MOTORS_MOT_1] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_1], out_min, out_max);
|
|
||||||
motor_out[AP_MOTORS_MOT_2] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_2], out_min, out_max);
|
|
||||||
motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, out_max);
|
|
||||||
|
|
||||||
// ensure motors don't drop below a minimum value and stop
|
|
||||||
motor_out[AP_MOTORS_MOT_1] = MAX(motor_out[AP_MOTORS_MOT_1], out_min);
|
|
||||||
motor_out[AP_MOTORS_MOT_2] = MAX(motor_out[AP_MOTORS_MOT_2], out_min);
|
|
||||||
motor_out[AP_MOTORS_MOT_4] = MAX(motor_out[AP_MOTORS_MOT_4], out_min);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
hal.rcout->cork();
|
// add scaled roll, pitch, constrained yaw and throttle for each motor
|
||||||
|
_thrust_right = throttle_thrust_best_rpy+thr_adj + rpy_scale*_thrust_right;
|
||||||
|
_thrust_left = throttle_thrust_best_rpy+thr_adj + rpy_scale*_thrust_left;
|
||||||
|
_thrust_rear = throttle_thrust_best_rpy+thr_adj + rpy_scale*_thrust_rear;
|
||||||
|
|
||||||
// send output to each motor
|
// calculate angle of yaw pivot
|
||||||
rc_write(AP_MOTORS_MOT_1, motor_out[AP_MOTORS_MOT_1]);
|
if(is_zero(_thrust_rear)){
|
||||||
rc_write(AP_MOTORS_MOT_2, motor_out[AP_MOTORS_MOT_2]);
|
limit.yaw = true;
|
||||||
rc_write(AP_MOTORS_MOT_4, motor_out[AP_MOTORS_MOT_4]);
|
if(yaw_thrust > 0.0f){
|
||||||
|
_pivot_angle = _pivot_angle_max;
|
||||||
|
}else if(yaw_thrust < 0.0f){
|
||||||
|
_pivot_angle = -_pivot_angle_max;
|
||||||
|
} else {
|
||||||
|
_pivot_angle = 0.0f;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
_pivot_angle = atan(yaw_thrust/_thrust_rear);
|
||||||
|
if(fabsf(_pivot_angle)>_pivot_angle_max){
|
||||||
|
limit.yaw = true;
|
||||||
|
_pivot_angle = constrain_float(_pivot_angle, -_pivot_angle_max, _pivot_angle_max);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// scale pivot thrust to account for pivot angle
|
||||||
|
// we should not need to check for divide by zero as _pivot_angle should always be much less than 90 degrees
|
||||||
|
_thrust_rear = _thrust_rear/cosf(_pivot_angle);
|
||||||
|
|
||||||
// send out to yaw command to tail servo
|
// constrain all outputs to 0.0f to 1.0f
|
||||||
rc_write(AP_MOTORS_CH_TRI_YAW, yaw_radio_output);
|
// test code should be run with these lines commented out as they should not do anything
|
||||||
|
_thrust_right = constrain_float(_thrust_right, 0.0f, 1.0f);
|
||||||
hal.rcout->push();
|
_thrust_left = constrain_float(_thrust_left, 0.0f, 1.0f);
|
||||||
|
_thrust_rear = constrain_float(_thrust_rear, 0.0f, 1.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
// output_test - spin a motor at the pwm value specified
|
// output_test - spin a motor at the pwm value specified
|
||||||
|
@ -52,11 +52,16 @@ protected:
|
|||||||
void output_armed_stabilizing();
|
void output_armed_stabilizing();
|
||||||
|
|
||||||
// calc_yaw_radio_output - calculate final radio output for yaw channel
|
// calc_yaw_radio_output - calculate final radio output for yaw channel
|
||||||
int16_t calc_yaw_radio_output(); // calculate radio output for yaw servo, typically in range of 1100-1900
|
int16_t calc_yaw_radio_output(float yaw_input, float yaw_input_max); // calculate radio output for yaw servo, typically in range of 1100-1900
|
||||||
|
|
||||||
// parameters
|
// parameters
|
||||||
AP_Int8 _yaw_reverse; // Reverse yaw output
|
AP_Int8 _yaw_reverse; // Reverse yaw output
|
||||||
AP_Int16 _yaw_servo_trim; // Trim or center position of yaw servo
|
AP_Int16 _yaw_servo_trim; // Trim or center position of yaw servo
|
||||||
AP_Int16 _yaw_servo_min; // Minimum angle limit of yaw servo
|
AP_Int16 _yaw_servo_min; // Minimum angle limit of yaw servo
|
||||||
AP_Int16 _yaw_servo_max; // Maximum angle limit of yaw servo
|
AP_Int16 _yaw_servo_max; // Maximum angle limit of yaw servo
|
||||||
|
float _pivot_angle_max = radians(30.0f); // Maximum angle of yaw pivot
|
||||||
|
float _pivot_angle; // Angle of yaw pivot
|
||||||
|
float _thrust_right;
|
||||||
|
float _thrust_rear;
|
||||||
|
float _thrust_left;
|
||||||
};
|
};
|
||||||
|
Loading…
Reference in New Issue
Block a user