Rover: switched to new steering controller

this uses a steering rate controller, based upon the planes roll
controller
This commit is contained in:
Andrew Tridgell 2013-09-09 10:18:31 +10:00
parent c044385fff
commit d000cd2320
6 changed files with 14 additions and 85 deletions

View File

@ -91,6 +91,7 @@
#include <AP_Scheduler.h> // main loop scheduler #include <AP_Scheduler.h> // main loop scheduler
#include <stdarg.h> #include <stdarg.h>
#include <AP_Navigation.h> #include <AP_Navigation.h>
#include <APM_Control.h>
#include <AP_L1_Control.h> #include <AP_L1_Control.h>
#include <AP_HAL_AVR.h> #include <AP_HAL_AVR.h>
@ -249,6 +250,9 @@ static AP_L1_Control L1_controller(ahrs);
// selected navigation controller // selected navigation controller
static AP_Navigation *nav_controller = &L1_controller; static AP_Navigation *nav_controller = &L1_controller;
// steering controller
static AP_SteerController steerController(ahrs);
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
SITL sitl; SITL sitl;
#endif #endif
@ -541,10 +545,6 @@ static uint8_t delta_ms_fast_loop;
// Counter of main loop executions. Used for performance monitoring and failsafe processing // Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count; static uint16_t mainLoop_count;
static struct {
float last_saved_value;
} learning;
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Top-level logic // Top-level logic
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@ -868,9 +868,6 @@ static void update_current_mode(void)
// and throttle gives speed in proportion to cruise speed // and throttle gives speed in proportion to cruise speed
throttle_nudge = 0; throttle_nudge = 0;
calc_throttle(channel_throttle->pwm_to_angle() * 0.01 * g.speed_cruise); calc_throttle(channel_throttle->pwm_to_angle() * 0.01 * g.speed_cruise);
if (g.steering_learn) {
steering_learning();
}
break; break;
} }

View File

@ -244,7 +244,7 @@ static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
nav_controller->nav_bearing_cd() * 0.01f, nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f, nav_controller->target_bearing_cd() * 0.01f,
wp_distance, wp_distance,
g.turn_circle.get(), 0,
groundspeed_error, groundspeed_error,
nav_controller->crosstrack_error()); nav_controller->crosstrack_error());
} }

View File

@ -55,7 +55,7 @@ public:
// 130: Sensor parameters // 130: Sensor parameters
// //
k_param_compass_enabled = 130, k_param_compass_enabled = 130,
k_param_steering_learn, k_param_steering_learn, // unused
// 140: battery controls // 140: battery controls
k_param_battery_monitoring = 140, k_param_battery_monitoring = 140,
@ -75,7 +75,7 @@ public:
k_param_ch7_option, k_param_ch7_option,
k_param_auto_trigger_pin, k_param_auto_trigger_pin,
k_param_auto_kickstart, k_param_auto_kickstart,
k_param_turn_circle, k_param_turn_circle, // unused
k_param_turn_max_g, k_param_turn_max_g,
// //
@ -144,7 +144,7 @@ public:
// //
// 240: PID Controllers // 240: PID Controllers
k_param_pidNavSteer = 230, k_param_pidNavSteer = 230,
k_param_pidServoSteer, k_param_pidServoSteer, // unused
k_param_pidSpeedThrottle, k_param_pidSpeedThrottle,
// high RC channels // high RC channels
@ -160,6 +160,7 @@ public:
k_param_compass, k_param_compass,
k_param_rcmap, k_param_rcmap,
k_param_L1_controller, k_param_L1_controller,
k_param_steerController,
// 254,255: reserved // 254,255: reserved
}; };
@ -204,9 +205,7 @@ public:
AP_Int8 ch7_option; AP_Int8 ch7_option;
AP_Int8 auto_trigger_pin; AP_Int8 auto_trigger_pin;
AP_Float auto_kickstart; AP_Float auto_kickstart;
AP_Float turn_circle;
AP_Float turn_max_g; AP_Float turn_max_g;
AP_Int8 steering_learn;
// RC channels // RC channels
RC_Channel rc_1; RC_Channel rc_1;
@ -270,7 +269,6 @@ public:
// PID controllers // PID controllers
// //
PID pidServoSteer;
PID pidSpeedThrottle; PID pidSpeedThrottle;
Parameters() : Parameters() :
@ -296,7 +294,6 @@ public:
// PID controller initial P initial I initial D initial imax // PID controller initial P initial I initial D initial imax
//----------------------------------------------------------------------------------- //-----------------------------------------------------------------------------------
pidServoSteer (0.5, 0.1, 0.2, 2000),
pidSpeedThrottle (0.7, 0.2, 0.2, 4000) pidSpeedThrottle (0.7, 0.2, 0.2, 4000)
{} {}
}; };

View File

@ -414,22 +414,6 @@ const AP_Param::Info var_info[] PROGMEM = {
// @User: Standard // @User: Standard
GSCALAR(waypoint_radius, "WP_RADIUS", 2.0f), GSCALAR(waypoint_radius, "WP_RADIUS", 2.0f),
// @Param: TURN_CIRCLE
// @DisplayName: Turning circle
// @Description: The diameter of the turning circle in meters of the rover at low speed when wheels are turned to the maximum turn angle
// @Units: meters
// @Range: 0.5 50
// @Increment: 0.1
// @User: Standard
GSCALAR(turn_circle, "TURN_CIRCLE", 1.5f),
// @Param: STEERING_LEARN
// @DisplayName: Steering learn enable
// @Description: When this option is enabled in STEERING mode the APM will try to learn the right tuning parameters for steering mode automatically while you are driving
// @User: Standard
// @Values: 0:Disabled,1:Enabled
GSCALAR(steering_learn, "STEERING_LEARN", 0),
// @Param: TURN_MAX_G // @Param: TURN_MAX_G
// @DisplayName: Turning maximum G force // @DisplayName: Turning maximum G force
// @Description: The maximum turning acceleration (in units of gravities) that the rover can handle while remaining stable. The navigation code will keep the lateral acceleration below this level to avoid rolling over or slipping the wheels in turns // @Description: The maximum turning acceleration (in units of gravities) that the rover can handle while remaining stable. The navigation code will keep the lateral acceleration below this level to avoid rolling over or slipping the wheels in turns
@ -439,7 +423,10 @@ const AP_Param::Info var_info[] PROGMEM = {
// @User: Standard // @User: Standard
GSCALAR(turn_max_g, "TURN_MAX_G", 2.0f), GSCALAR(turn_max_g, "TURN_MAX_G", 2.0f),
GGROUP(pidServoSteer, "STEER2SRV_", PID), // @Group: STEER2SRV_
// @Path: ../libraries/APM_Control/AP_SteerController.cpp
GOBJECT(steerController, "STEER2SRV_", AP_SteerController),
GGROUP(pidSpeedThrottle, "SPEED2THR_", PID), GGROUP(pidSpeedThrottle, "SPEED2THR_", PID),
// variables not in the g class which contain EEPROM saved variables // variables not in the g class which contain EEPROM saved variables

View File

@ -146,7 +146,6 @@ static void calc_lateral_acceleration()
static void calc_nav_steer() static void calc_nav_steer()
{ {
float speed = g_gps->ground_speed_cm * 0.01f; float speed = g_gps->ground_speed_cm * 0.01f;
float steer;
if (speed < 1.0f) { if (speed < 1.0f) {
// gps speed isn't very accurate at low speed // gps speed isn't very accurate at low speed
@ -159,13 +158,7 @@ static void calc_nav_steer()
// constrain to max G force // constrain to max G force
lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g*GRAVITY_MSS, g.turn_max_g*GRAVITY_MSS); lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g*GRAVITY_MSS, g.turn_max_g*GRAVITY_MSS);
// this is a linear approximation of the inverse steering channel_steer->servo_out = steerController.get_steering_out(lateral_acceleration);
// equation for a rover. It returns steering as a proportion
// from -1 to 1
steer = 0.5 * lateral_acceleration * g.turn_circle / (speed*speed);
steer = constrain_float(steer, -1, 1);
channel_steer->servo_out = steer * 4500;
} }
/***************************************** /*****************************************
@ -269,45 +262,3 @@ static void demo_servos(uint8_t i) {
} }
} }
/*
learning of TURN_CIRCLE in STEERING mode
*/
static void steering_learning(void)
{
/*
only do learning when we are moving at least at 2m/s, and do not
have saturated steering
*/
if (abs(channel_steer->servo_out) >= 4490 ||
abs(channel_steer->servo_out) < 100 ||
g_gps->status() < GPS::GPS_OK_FIX_3D ||
g_gps->ground_speed_cm < 100) {
return;
}
/*
the idea is to slowly adjust the turning circle to bring the
actual and desired turn rates into line
*/
float demanded = lateral_acceleration;
/*
for Y accel use the gyro times the velocity, as that is less
noise sensitive, and is a more direct measure of steering rate,
which is what we are really trying to control
*/
float actual = ins.get_gyro().z * 0.01f * g_gps->ground_speed_cm;
if (fabsf(actual) < 0.1f) {
// too little acceleration to really measure accurately
return;
}
float ratio = demanded/actual;
if (ratio > 1.0f) {
g.turn_circle.set(g.turn_circle * 1.0005f);
} else {
g.turn_circle.set(g.turn_circle * 0.9995f);
}
if (fabs(learning.last_saved_value - g.turn_circle) > 0.05f) {
learning.last_saved_value = g.turn_circle;
g.turn_circle.save();
}
}

View File

@ -506,9 +506,6 @@ static void report_gains()
cliSerial->printf_P(PSTR("Gains\n")); cliSerial->printf_P(PSTR("Gains\n"));
print_divider(); print_divider();
cliSerial->printf_P(PSTR("servo steer:\n"));
print_PID(&g.pidServoSteer);
cliSerial->printf_P(PSTR("speed throttle:\n")); cliSerial->printf_P(PSTR("speed throttle:\n"));
print_PID(&g.pidSpeedThrottle); print_PID(&g.pidSpeedThrottle);