AP_RC_Channel: deleted this library as nobody seems to be using it.

Everyone is using RC_Channel instead which includes parameters.
This commit is contained in:
rmackay9 2012-08-13 16:36:10 +09:00
parent 35e7a6e018
commit cf943255a5
4 changed files with 0 additions and 793 deletions

View File

@ -1,332 +0,0 @@
/*
AP_RC_Channel.cpp - Radio library for Arduino Legacy Hardware
Code by Jason Short. DIYDrones.com
Improvements to implement channel curves by Ron Curry, 2012
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include <math.h>
#include <avr/eeprom.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "AP_RC_Channel.h"
#define ANGLE 0
#define RANGE 1
// setup the control preferences
void
AP_RC_Channel::set_range(int low, int high)
{
_type = RANGE;
_high = high;
_low = low;
}
void
AP_RC_Channel::set_angle(int angle)
{
_type = ANGLE;
_high = angle;
}
void
AP_RC_Channel::set_reverse(bool reverse)
{
if (reverse) _reverse = -1;
else _reverse = 1;
}
bool
AP_RC_Channel::get_reverse(void)
{
if (_reverse==-1) return 1;
else return 0;
}
void
AP_RC_Channel::set_filter(bool filter)
{
_filter = filter;
}
// call after first read
void
AP_RC_Channel::trim()
{
radio_trim = radio_in;
}
//-------------------------------------------------------------------------------
// Support for PWM translation (i.e. curves or "expo")
//
// Translation of the input PWM is done via a pointer "channel_curve" to an array that defines the PWM output value
// for any given input value. The array is structured with element 0 equal to the number of elements
// in the curve. If the length is zero then the array defines no curve. If the "channel_curve" pointer
// is NULL that is interpretted as no curve defined and is the default state.
//
// Elements 1 to n of the array contain the values for the curve. These are defined in terms of the actual
// PWM output pulsewidth desired for a given point on the curve with curve element 1 containing the value
// for the lowest input value from the RC RX and element "n" containing the value for the highest input value
// from the RX.
//
// Input PWM values are expected to be in the range of the radio calibration values "radio_min" to "radio_max". The
// user must have already completed the radio calibration otherwise output will be inaccurage. Input PWM values
// generate an index that falls between curve elements will cause the output to be interpolated in a linear fashion
// between the curve elements. For example: A curve defined as element 0 = 2 (length), element 1 = 900, and
// element 2 = 2100 would define a linear straight line output between 900 and 2100 for valid input values.
// Additional elements could be inserted between element 1 and element 2 to define more complex
// curves. - R. Curry 06-14-12
// Sets curve for channel output to user defined curve
// Input: curve - A pointer to a user defined output curve for this channel
void
AP_RC_Channel::set_channel_curve(int *curve)
{
_channel_curve = curve; // Channel_curve points to array containing curve info
}
// Unsets the curve for this channel - i.e. no curve translation
void
AP_RC_Channel::unset_channel_curve()
{
_channel_curve = NULL;
}
// Apply the current curve to a PWM value
// Input: PWM value in range of radio_min to radio_max
// Output: Translated PWM value
int
AP_RC_Channel::apply_curve(int pwm)
{
float scale;
int index1, index2;
if (_channel_curve != NULL)
{
if (_channel_curve[0] > 0) // If the length of the curve isn't zero then use it
{
// Calculate the index into the channel curve table
scale = ((float)(pwm - radio_min) /
(float)(radio_max - radio_min)) *
((float)_channel_curve[0]-1);
index1 = (int)scale; // get the index
scale -= (float)index1; // scale now has the remainder for later
if (index1 < 0) { // If the PWM value below our range then clamp to lowest table entry
index1 = 0;
scale = 0.0;
}
index2 = index1 + 1; // Point to the next entry beyond our current for interpolation
if (index2 >= _channel_curve[0]) { // If we are beyond the end then clamp to highest entry
index2 = _channel_curve[0] - 1;
if (index1 >= _channel_curve[0]) { // Also check index 1 and clamp if necessary
index1 = _channel_curve[0] -1;
}
}
// Do the lookup and interpolation
index1++; // curve values start at entry 1
index2++;
pwm = ((_channel_curve[index1] *
(1 - scale)) + (_channel_curve[index2] *
scale)); // Get the pwm value from the curve and interpolate - done
}
}
return pwm; //
}
//-------------------------------------------------------------------------------
// read input from APM_RC - create a control_in value
void
AP_RC_Channel::set_pwm(int pwm)
{
// Serial.print(pwm,DEC);
// Apply the curve - if any
pwm = apply_curve(pwm);
if(_filter){
if(radio_in == 0)
radio_in = pwm;
else
radio_in = ((pwm + radio_in) >> 1); // Small filtering
}else{
radio_in = pwm;
}
if(_type == RANGE){
//Serial.print("range ");
control_in = pwm_to_range();
control_in = (control_in < dead_zone) ? 0 : control_in;
}else{
control_in = pwm_to_angle();
control_in = (abs(control_in) < dead_zone) ? 0 : control_in;
}
}
int
AP_RC_Channel::control_mix(float value)
{
return (1 - abs(control_in / _high)) * value + control_in;
}
// are we below a threshold?
bool
AP_RC_Channel::get_failsafe(void)
{
return (radio_in < (radio_min - 50));
}
// returns just the PWM without the offset from radio_min
void
AP_RC_Channel::calc_pwm(void)
{
if(_type == RANGE){
pwm_out = range_to_pwm();
radio_out = pwm_out + radio_min;
}else{
pwm_out = angle_to_pwm();
radio_out = pwm_out + radio_trim;
}
// radio_out = constrain(radio_out, radio_min, radio_max);
}
// ------------------------------------------
void
AP_RC_Channel::load_eeprom(void)
{
radio_min = eeprom_read_word((uint16_t *) _address);
radio_max = eeprom_read_word((uint16_t *) (_address + 2));
load_trim();
}
void
AP_RC_Channel::save_eeprom(void)
{
eeprom_write_word((uint16_t *) _address, radio_min);
eeprom_write_word((uint16_t *) (_address + 2), radio_max);
save_trim();
}
// ------------------------------------------
void
AP_RC_Channel::save_trim(void)
{
eeprom_write_word((uint16_t *) (_address + 4), radio_trim);
//_ee.write_int((_address + 4), radio_trim);
}
void
AP_RC_Channel::load_trim(void)
{
radio_trim = eeprom_read_word((uint16_t *) (_address + 4));
//_ee.write_int((_address + 4), radio_trim);
}
// ------------------------------------------
void
AP_RC_Channel::zero_min_max()
{
radio_min = radio_max = radio_in;
}
void
AP_RC_Channel::update_min_max()
{
radio_min = min(radio_min, radio_in);
radio_max = max(radio_max, radio_in);
}
// ------------------------------------------
int16_t
AP_RC_Channel::pwm_to_angle()
{
if(radio_in < radio_trim)
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_trim - radio_min);
else
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_max - radio_trim);
//return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_max - radio_trim));
//return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_trim - radio_min));
}
int16_t
AP_RC_Channel::angle_to_pwm()
{
if(_reverse == -1)
{
if(servo_out < 0)
return ( -1 * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high);
else
return ( -1 * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high);
} else {
if(servo_out > 0)
return ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high;
else
return ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high;
}
//return (((float)servo_out / (float)_high) * (float)(radio_max - radio_trim));
//return (((float)servo_out / (float)_high) * (float)(radio_trim - radio_min));
}
// ------------------------------------------
int16_t
AP_RC_Channel::pwm_to_range()
{
//return (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min))));
return (_low + ((long)(_high - _low) * (long)(radio_in - radio_min)) / (long)(radio_max - radio_min));
}
int16_t
AP_RC_Channel::range_to_pwm()
{
//return (((float)(servo_out - _low) / (float)(_high - _low)) * (float)(radio_max - radio_min));
return ((long)(servo_out - _low) * (long)(radio_max - radio_min)) / (long)(_high - _low);
}
// ------------------------------------------
float
AP_RC_Channel::norm_input()
{
if(radio_in < radio_trim)
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
else
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
float
AP_RC_Channel::norm_output()
{
if(radio_out < radio_trim)
return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min);
else
return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim);
}

View File

@ -1,106 +0,0 @@
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file AP_RC_Channel.h
/// @brief AP_RC_Channel manager, with EEPROM-backed storage of constants.
#ifndef AP_RC_Channel_h
#define AP_RC_Channel_h
//#include <AP_Common.h>
#include <stdint.h>
/// @class AP_RC_Channel
/// @brief Object managing one RC channel
class AP_RC_Channel{
public:
/// Constructor
///
/// @param key EEPROM storage key for the channel trim parameters.
/// @param name Optional name for the group.
///
AP_RC_Channel(uint16_t address) :
_address(address),
_high(1),
_filter(true),
_reverse(1),
dead_zone(0){}
AP_RC_Channel() :
_high(1),
_filter(true),
_reverse(1),
dead_zone(0){}
// setup min and max radio values in CLI
void update_min_max();
void zero_min_max();
// startup
void load_eeprom(void);
void save_eeprom(void);
void save_trim(void);
void load_trim(void);
void set_filter(bool filter);
// setup the control preferences
void set_range(int low, int high);
void set_angle(int angle);
void set_reverse(bool reverse);
bool get_reverse(void);
// read input from APM_RC - create a control_in value
void set_pwm(int pwm);
// pwm is stored here
int16_t radio_in;
// call after first set_pwm
void trim();
// did our read come in 50µs below the min?
bool get_failsafe(void);
// value generated from PWM
int16_t control_in;
int16_t dead_zone; // used to keep noise down and create a dead zone.
int control_mix(float value);
// current values to the servos - degrees * 100 (approx assuming servo is -45 to 45 degrees except [3] is 0 to 100
int16_t servo_out;
// generate PWM from servo_out value
void calc_pwm(void);
// PWM is without the offset from radio_min
int16_t pwm_out;
int16_t radio_out;
int16_t radio_min;
int16_t radio_trim;
int16_t radio_max;
// includes offset from PWM
//int16_t get_radio_out(void);
int16_t pwm_to_angle();
float norm_input();
float norm_output();
int16_t angle_to_pwm();
int16_t pwm_to_range();
int16_t range_to_pwm();
private:
bool _filter;
int8_t _reverse;
int16_t _address;
bool _type;
int16_t _high;
int16_t _low;
};
#endif

View File

@ -1,353 +0,0 @@
/*
Example of AP_RC_Channel library.
Original Code by Jason Short. 2010
Updates to support 2.6+ and channel curves by Ron Curry, 2012
DIYDrones.com
*/
#include <AP_RC_Channel.h> // ArduPilot RC Library
#include <Arduino_Mega_ISR_Registry.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
Arduino_Mega_ISR_Registry isr_registry;
APM_RC_APM2 APM_RC;
/*
#define EE_RADIO_1 0x00 // all gains stored from here
#define EE_RADIO_2 0x06 // all gains stored from here
#define EE_RADIO_3 0x0C // all gains stored from here
#define EE_RADIO_4 0x12 // all gains stored from here
AP_RC_Channel rc_1(EE_RADIO_1);
AP_RC_Channel rc_2(EE_RADIO_2);
AP_RC_Channel rc_3(EE_RADIO_3);
AP_RC_Channel rc_4(EE_RADIO_4);
*/
AP_RC_Channel rc_1;
AP_RC_Channel rc_2;
AP_RC_Channel rc_3;
AP_RC_Channel rc_4;
AP_RC_Channel rc_5;
AP_RC_Channel rc_6;
AP_RC_Channel rc_7;
AP_RC_Channel rc_8;
// curve1 demonstrates how the full range of the RC input is scaled to span only a range of 200 with increased resolution
// Output is not clipped but rather scaled
static int curve1[] = { 3, 1400, 1500, 1600};
// curve2 demonstrates quick ramp with short throw from 1100 to 1400, then flat, high-res section from 1400 - 1600, then quick
// ramp short throw from 1600 to 1950 - classic expo function as seen in most TX's
static int curve2[] = {5, 1100, 1400, 1500, 1600, 1950};
// curve 3 demonstrats quick ramp/short thrown to 1300 then relative flat, high-rese section from 1300 to 1950 with a more
// detailed definition
static int curve3[] = {10, 1100, 1300, 1400, 1450, 1500, 1550, 1600, 1700, 1825, 1950};
// curve 4 demonstrates scaling to a larger PWM range in this case 900-2100 (from approx 1100-1900)
// with other modifications this could be used to support output devices that require a different range of PWM values than normal
static int curve4[] = {3, 100, 500, 900};
void setup()
{
isr_registry.init();
APM_RC.Init(&isr_registry); // APM Radio initialization
APM_RC.enable_out(CH_1);
APM_RC.enable_out(CH_2);
APM_RC.enable_out(CH_3);
APM_RC.enable_out(CH_4);
APM_RC.enable_out(CH_5);
APM_RC.enable_out(CH_6);
APM_RC.enable_out(CH_7);
APM_RC.enable_out(CH_8);
Serial.begin(115200);
Serial.println("ArduPilot RC Channel test");
delay(500);
// setup radio
// read eepom or set manually
/*
rc_1.radio_min = 1100;
rc_1.radio_max = 1900;
rc_2.radio_min = 1100;
rc_2.radio_max = 1900;
rc_3.radio_min = 1100;
rc_3.radio_max = 1900;
rc_4.radio_min = 1100;
rc_4.radio_max = 1900;
// or
rc_1.load_eeprom();
rc_2.load_eeprom();
rc_3.load_eeprom();
rc_4.load_eeprom();
*/
// interactive setup
setup_radio();
print_radio_values();
// set type of output, symmetrical angles or a number range;
rc_1.set_range(0,1000);
rc_2.set_range(0,1000);
rc_3.set_range(0,1000);
rc_4.set_range(0,1000);
rc_5.set_range(0,1000);
rc_6.set_angle(4500);
rc_7.set_angle(4500);
rc_8.set_angle(4500);
/*
rc_1.dead_zone = 85;
rc_2.dead_zone = 85;
rc_3.dead_zone = 85;
rc_4.dead_zone = 85;
rc_5.dead_zone = 85;
rc_6.dead_zone = 85;
rc_7.dead_zone = 85;
rc_8.dead_zone = 85;
*/
for (byte i = 0; i < 30; i++){
read_radio();
}
rc_1.trim();
rc_2.trim();
rc_4.trim();
rc_5.trim();
rc_6.trim();
rc_7.trim();
rc_8.trim();
// Setup test curves
rc_1.set_channel_curve(curve1);
rc_2.set_channel_curve(curve2);
rc_3.set_channel_curve(curve3);
rc_4.set_channel_curve(curve4);
rc_5.unset_channel_curve();
rc_6.unset_channel_curve();
rc_7.unset_channel_curve();
rc_8.unset_channel_curve();
}
void loop()
{
if (APM_RC.GetState() == 1)
{
read_radio();
rc_1.servo_out = rc_1.control_in;
rc_2.servo_out = rc_2.control_in;
rc_3.servo_out = rc_3.control_in;
rc_4.servo_out = rc_4.control_in;
rc_5.servo_out = rc_5.control_in;
rc_6.servo_out = rc_6.control_in;
rc_7.servo_out = rc_7.control_in;
rc_8.servo_out = rc_8.control_in;
rc_1.calc_pwm();
rc_2.calc_pwm();
rc_3.calc_pwm();
rc_4.calc_pwm();
rc_5.calc_pwm();
rc_6.calc_pwm();
rc_7.calc_pwm();
rc_8.calc_pwm();
print_pwm();
print_control_in();
// send values to the PWM timers for output
// ----------------------------------------
APM_RC.OutputCh(CH_1, rc_1.radio_out); // send to Servos
APM_RC.OutputCh(CH_2, rc_2.radio_out); // send to Servos
APM_RC.OutputCh(CH_3, rc_3.radio_out); // send to Servos
APM_RC.OutputCh(CH_4, rc_4.radio_out); // send to Servos
APM_RC.OutputCh(CH_5, rc_5.radio_out); // send to Servos
APM_RC.OutputCh(CH_6, rc_6.radio_out); // send to Servos
APM_RC.OutputCh(CH_7, rc_7.radio_out); // send to Servos
APM_RC.OutputCh(CH_8, rc_8.radio_out); // send to Servos
}
}
void read_radio()
{
rc_1.set_pwm(APM_RC.InputCh(CH_1));
rc_2.set_pwm(APM_RC.InputCh(CH_2));
rc_3.set_pwm(APM_RC.InputCh(CH_3));
rc_4.set_pwm(APM_RC.InputCh(CH_4));
rc_5.set_pwm(APM_RC.InputCh(CH_5));
rc_6.set_pwm(APM_RC.InputCh(CH_6));
rc_7.set_pwm(APM_RC.InputCh(CH_7));
rc_8.set_pwm(APM_RC.InputCh(CH_8));
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"), rc_1.control_in, rc_2.control_in, rc_3.control_in, rc_4.control_in,
// rc_5.control_in, rc_6.control_in, rc_7.control_in, rc_8.control_in);
}
void print_pwm()
{
Serial.print("\t1: ");
Serial.print(rc_1.radio_out, DEC);
Serial.print("\t2: ");
Serial.print(rc_2.radio_out, DEC);
Serial.print("\t3:");
Serial.print(rc_3.radio_out, DEC);
Serial.print("\t4:");
Serial.print(rc_4.radio_in , DEC);
/* Serial.print("\t5");
Serial.print(rc_5.radio_out, DEC);
Serial.print("\t6: ");
Serial.print(rc_6.radio_out, DEC);
Serial.print("\t7:");
Serial.print(rc_7.radio_out, DEC);
Serial.print("\t8:");
Serial.print(rc_8.radio_out , DEC);
*/
}
// 1280
// 1536
// 1795
void print_control_in()
{
Serial.print("\t1: ");
Serial.print(rc_1.control_in, DEC);
Serial.print("\t2: ");
Serial.print(rc_2.control_in, DEC);
Serial.print("\t3:");
Serial.print(rc_3.control_in, DEC);
Serial.print("\t4:");
Serial.println(rc_4.control_in, DEC);
/* Serial.print("\t5: ");
Serial.print(rc_5.control_in, DEC);
Serial.print("\t6: ");
Serial.print(rc_6.control_in, DEC);
Serial.print("\t7:");
Serial.print(rc_7.control_in, DEC);
Serial.print("\t8:");
Serial.println(rc_8.control_in, DEC);
*/
}
void
print_radio_values()
{
Serial.print("CH1: ");
Serial.print(rc_1.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_1.radio_max, DEC);
Serial.print("CH2: ");
Serial.print(rc_2.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_2.radio_max, DEC);
Serial.print("CH3: ");
Serial.print(rc_3.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_3.radio_max, DEC);
Serial.print("CH4: ");
Serial.print(rc_4.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_4.radio_max, DEC);
/*
Serial.print("CH5: ");
Serial.print(rc_5.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_5.radio_max, DEC);
Serial.print("CH6: ");
Serial.print(rc_6.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_6.radio_max, DEC);
Serial.print("CH7: ");
Serial.print(rc_7.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_7.radio_max, DEC);
Serial.print("CH8: ");
Serial.print(rc_8.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_8.radio_max, DEC);
*/
}
void
setup_radio()
{
Serial.println("\n\nRadio Setup:");
uint8_t i;
for(i = 0; i < 100;i++){
delay(20);
read_radio();
}
rc_1.radio_min = rc_1.radio_in;
rc_2.radio_min = rc_2.radio_in;
rc_3.radio_min = rc_3.radio_in;
rc_4.radio_min = rc_4.radio_in;
rc_5.radio_min = rc_5.radio_in;
rc_6.radio_min = rc_6.radio_in;
rc_7.radio_min = rc_7.radio_in;
rc_8.radio_min = rc_8.radio_in;
rc_1.radio_max = rc_1.radio_in;
rc_2.radio_max = rc_2.radio_in;
rc_3.radio_max = rc_3.radio_in;
rc_4.radio_max = rc_4.radio_in;
rc_5.radio_max = rc_5.radio_in;
rc_6.radio_max = rc_6.radio_in;
rc_7.radio_max = rc_7.radio_in;
rc_8.radio_max = rc_8.radio_in;
rc_1.radio_trim = rc_1.radio_in;
rc_2.radio_trim = rc_2.radio_in;
rc_4.radio_trim = rc_4.radio_in;
rc_5.radio_trim = rc_5.radio_in;
rc_6.radio_trim = rc_6.radio_in;
rc_7.radio_trim = rc_7.radio_in;
rc_8.radio_trim = rc_8.radio_in;
Serial.println("\nMove all controls to each extreme. Hit Enter to save:");
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
rc_1.update_min_max();
rc_2.update_min_max();
rc_3.update_min_max();
rc_4.update_min_max();
rc_5.update_min_max();
rc_6.update_min_max();
rc_7.update_min_max();
rc_8.update_min_max();
if(Serial.available() > 0){
//rc_3.radio_max += 250;
Serial.flush();
Serial.println("Radio calibrated, Showing control values:");
break;
}
}
return;
}

View File

@ -1,2 +0,0 @@
BOARD = mega
include ../../../AP_Common/Arduino.mk