mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 14:38:30 -04:00
uncrustify libraries/AP_OpticalFlow/AP_OpticalFlow.cpp
This commit is contained in:
parent
0fb7e82792
commit
ce14ba0868
@ -1,12 +1,12 @@
|
||||
/*
|
||||
ADC.cpp - Analog Digital Converter Base Class for Ardupilot Mega
|
||||
Code by James Goppert. DIYDrones.com
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
*/
|
||||
* ADC.cpp - Analog Digital Converter Base Class for Ardupilot Mega
|
||||
* Code by James Goppert. DIYDrones.com
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*/
|
||||
|
||||
#include "AP_OpticalFlow.h"
|
||||
|
||||
@ -18,9 +18,9 @@ AP_OpticalFlow* AP_OpticalFlow::_sensor = NULL; // pointer to the last instanti
|
||||
bool
|
||||
AP_OpticalFlow::init(bool initCommAPI)
|
||||
{
|
||||
_orientation = ROTATION_NONE;
|
||||
update_conversion_factors();
|
||||
return true; // just return true by default
|
||||
_orientation = ROTATION_NONE;
|
||||
update_conversion_factors();
|
||||
return true; // just return true by default
|
||||
}
|
||||
|
||||
// set_orientation - Rotation vector to transform sensor readings to the body frame.
|
||||
@ -34,14 +34,14 @@ AP_OpticalFlow::set_orientation(enum Rotation rotation)
|
||||
bool
|
||||
AP_OpticalFlow::update()
|
||||
{
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
// reads a value from the sensor (will be sensor specific)
|
||||
byte
|
||||
AP_OpticalFlow::read_register(byte address)
|
||||
{
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// writes a value to one of the sensor's register (will be sensor specific)
|
||||
@ -54,60 +54,60 @@ AP_OpticalFlow::write_register(byte address, byte value)
|
||||
void
|
||||
AP_OpticalFlow::apply_orientation_matrix()
|
||||
{
|
||||
Vector3f rot_vector;
|
||||
rot_vector(raw_dx, raw_dy, 0);
|
||||
Vector3f rot_vector;
|
||||
rot_vector(raw_dx, raw_dy, 0);
|
||||
|
||||
// next rotate dx and dy
|
||||
rot_vector.rotate(_orientation);
|
||||
// next rotate dx and dy
|
||||
rot_vector.rotate(_orientation);
|
||||
|
||||
dx = rot_vector.x;
|
||||
dy = rot_vector.y;
|
||||
dx = rot_vector.x;
|
||||
dy = rot_vector.y;
|
||||
|
||||
// add rotated values to totals (perhaps this is pointless as we need to take into account yaw, roll, pitch)
|
||||
x += dx;
|
||||
y += dy;
|
||||
// add rotated values to totals (perhaps this is pointless as we need to take into account yaw, roll, pitch)
|
||||
x += dx;
|
||||
y += dy;
|
||||
}
|
||||
|
||||
// updatse conversion factors that are dependent upon field_of_view
|
||||
void
|
||||
AP_OpticalFlow::update_conversion_factors()
|
||||
{
|
||||
conv_factor = (1.0 / (float)(num_pixels * scaler)) * 2.0 * tan(field_of_view / 2.0); // multiply this number by altitude and pixel change to get horizontal move (in same units as altitude)
|
||||
// 0.00615
|
||||
radians_to_pixels = (num_pixels * scaler) / field_of_view;
|
||||
// 162.99
|
||||
conv_factor = (1.0 / (float)(num_pixels * scaler)) * 2.0 * tan(field_of_view / 2.0); // multiply this number by altitude and pixel change to get horizontal move (in same units as altitude)
|
||||
// 0.00615
|
||||
radians_to_pixels = (num_pixels * scaler) / field_of_view;
|
||||
// 162.99
|
||||
}
|
||||
|
||||
// updates internal lon and lat with estimation based on optical flow
|
||||
void
|
||||
AP_OpticalFlow::update_position(float roll, float pitch, float cos_yaw_x, float sin_yaw_y, float altitude)
|
||||
{
|
||||
float diff_roll = roll - _last_roll;
|
||||
float diff_pitch = pitch - _last_pitch;
|
||||
float diff_roll = roll - _last_roll;
|
||||
float diff_pitch = pitch - _last_pitch;
|
||||
|
||||
// only update position if surface quality is good and angle is not over 45 degrees
|
||||
if( surface_quality >= 10 && fabs(roll) <= FORTYFIVE_DEGREES && fabs(pitch) <= FORTYFIVE_DEGREES ) {
|
||||
altitude = max(altitude, 0);
|
||||
// calculate expected x,y diff due to roll and pitch change
|
||||
exp_change_x = diff_roll * radians_to_pixels;
|
||||
exp_change_y = -diff_pitch * radians_to_pixels;
|
||||
// only update position if surface quality is good and angle is not over 45 degrees
|
||||
if( surface_quality >= 10 && fabs(roll) <= FORTYFIVE_DEGREES && fabs(pitch) <= FORTYFIVE_DEGREES ) {
|
||||
altitude = max(altitude, 0);
|
||||
// calculate expected x,y diff due to roll and pitch change
|
||||
exp_change_x = diff_roll * radians_to_pixels;
|
||||
exp_change_y = -diff_pitch * radians_to_pixels;
|
||||
|
||||
// real estimated raw change from mouse
|
||||
change_x = dx - exp_change_x;
|
||||
change_y = dy - exp_change_y;
|
||||
// real estimated raw change from mouse
|
||||
change_x = dx - exp_change_x;
|
||||
change_y = dy - exp_change_y;
|
||||
|
||||
float avg_altitude = (altitude + _last_altitude)*0.5;
|
||||
float avg_altitude = (altitude + _last_altitude)*0.5;
|
||||
|
||||
// convert raw change to horizontal movement in cm
|
||||
x_cm = -change_x * avg_altitude * conv_factor; // perhaps this altitude should actually be the distance to the ground? i.e. if we are very rolled over it should be longer?
|
||||
y_cm = -change_y * avg_altitude * conv_factor; // for example if you are leaned over at 45 deg the ground will appear farther away and motion from opt flow sensor will be less
|
||||
// convert raw change to horizontal movement in cm
|
||||
x_cm = -change_x * avg_altitude * conv_factor; // perhaps this altitude should actually be the distance to the ground? i.e. if we are very rolled over it should be longer?
|
||||
y_cm = -change_y * avg_altitude * conv_factor; // for example if you are leaned over at 45 deg the ground will appear farther away and motion from opt flow sensor will be less
|
||||
|
||||
// convert x/y movements into lon/lat movement
|
||||
vlon = x_cm * sin_yaw_y + y_cm * cos_yaw_x;
|
||||
vlat = y_cm * sin_yaw_y - x_cm * cos_yaw_x;
|
||||
}
|
||||
// convert x/y movements into lon/lat movement
|
||||
vlon = x_cm * sin_yaw_y + y_cm * cos_yaw_x;
|
||||
vlat = y_cm * sin_yaw_y - x_cm * cos_yaw_x;
|
||||
}
|
||||
|
||||
_last_altitude = altitude;
|
||||
_last_roll = roll;
|
||||
_last_pitch = pitch;
|
||||
_last_altitude = altitude;
|
||||
_last_roll = roll;
|
||||
_last_pitch = pitch;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user