Conflicts:
	ArduCopter/APM_Config.h
	ArduPlane/APM_Config.h
This commit is contained in:
Chris Anderson 2012-01-09 09:01:46 -08:00
commit ca201a7d9d
17 changed files with 302 additions and 96 deletions

View File

@ -2,6 +2,9 @@
// Example config file. Take a look at config.h. Any term define there can be overridden by defining it here.
// # define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
// # define APM2_BETA_HARDWARE
// GPS is auto-selected
#define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
@ -27,7 +30,7 @@
V_FRAME
*/
# define CH7_OPTION CH7_SAVE_WP
//# define CH7_OPTION CH7_SAVE_WP
/*
CH7_DO_NOTHING
CH7_SET_HOVER
@ -41,9 +44,6 @@
#define ACCEL_ALT_HOLD 0 // disabled by default, work in progress
// lets use Manual throttle during Loiter
//#define LOITER_THR THROTTLE_MANUAL
# define RTL_YAW YAW_HOLD
//#define RATE_ROLL_I 0.18
//#define RATE_PITCH_I 0.18
@ -70,6 +70,4 @@
// #define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
// #define APM2_BETA_HARDWARE // for developers who received an early beta board with the older BMP085
// This is experimental!!, be caureful, effects stable mode
#define WIND_COMP_STAB 0
//# define LOGGING_ENABLED DISABLED

View File

@ -1,6 +1,6 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V2.1.1r7 alpha"
#define THISFIRMWARE "ArduCopter V2.1.1r8 alpha"
/*
ArduCopter Version 2.0 Beta
Authors: Jason Short
@ -665,6 +665,11 @@ static int16_t nav_lon;
static int16_t nav_lat_p;
static int16_t nav_lon_p;
// The Commanded ROll from the autopilot based on optical flow sensor.
static int32_t of_roll = 0;
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
static int32_t of_pitch = 0;
////////////////////////////////////////////////////////////////////////////////
// Navigation Throttle control
@ -926,12 +931,6 @@ static void medium_loop()
update_GPS();
}
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled){
update_optical_flow();
}
#endif
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
if(g.compass_enabled){
if (compass.read()) {
@ -975,13 +974,13 @@ static void medium_loop()
// If we have optFlow enabled we can grab a more accurate speed
// here and override the speed from the GPS
// ----------------------------------------
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled && current_loc.alt < 500){
// optflow wont be enabled on 1280's
x_GPS_speed = optflow.x_cm;
y_GPS_speed = optflow.y_cm;
}
#endif
//#ifdef OPTFLOW_ENABLED
//if(g.optflow_enabled && current_loc.alt < 500){
// // optflow wont be enabled on 1280's
// x_GPS_speed = optflow.x_cm;
// y_GPS_speed = optflow.y_cm;
//}
//#endif
// control mode specific updates
// -----------------------------
@ -1096,6 +1095,13 @@ static void fifty_hz_loop()
}
#endif
// syncronise optical flow reads with altitude reads
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled){
update_optical_flow();
}
#endif
// agmatthews - USERHOOKS
#ifdef USERHOOK_50HZLOOP
USERHOOK_50HZLOOP
@ -1222,15 +1228,21 @@ static void super_slow_loop()
#ifdef OPTFLOW_ENABLED
static void update_optical_flow(void)
{
static int log_counter = 0;
optflow.update();
optflow.update_position(dcm.roll, dcm.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log
if (g.log_bitmask & MASK_LOG_OPTFLOW){
Log_Write_Optflow();
log_counter++;
if( log_counter >= 5 ) {
log_counter = 0;
if (g.log_bitmask & MASK_LOG_OPTFLOW){
Log_Write_Optflow();
}
}
if(g.optflow_enabled && current_loc.alt < 500){
/*if(g.optflow_enabled && current_loc.alt < 500){
if(GPS_enabled){
// if we have a GPS, we add some detail to the GPS
// XXX this may not ne right
@ -1247,7 +1259,7 @@ static void update_optical_flow(void)
}
// OK to run the nav routines
nav_ok = true;
}
}*/
}
#endif
@ -1390,15 +1402,17 @@ void update_roll_pitch_mode(void)
if(do_simple && new_radio_frame){
update_simple_mode();
}
#if WIND_COMP_STAB == 1
// in this mode, nav_roll and nav_pitch = the iterm
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in + nav_roll);
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in + nav_pitch);
// in this mode, nav_roll and nav_pitch = the iterm
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in + nav_roll);
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in + nav_pitch);
#else
// in this mode, nav_roll and nav_pitch = the iterm
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in);
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in);
// in this mode, nav_roll and nav_pitch = the iterm
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in);
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in);
#endif
break;
case ROLL_PITCH_AUTO:
@ -1412,6 +1426,22 @@ void update_roll_pitch_mode(void)
g.rc_1.servo_out = get_stabilize_roll(control_roll);
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
break;
case ROLL_PITCH_STABLE_OF:
// apply SIMPLE mode transform
if(do_simple && new_radio_frame){
update_simple_mode();
}
// in this mode, nav_roll and nav_pitch = the iterm
#if WIND_COMP_STAB == 1
g.rc_1.servo_out = get_stabilize_roll(get_of_roll(g.rc_1.control_in + nav_roll));
g.rc_2.servo_out = get_stabilize_pitch(get_of_pitch(g.rc_2.control_in + nav_pitch));
#else
g.rc_1.servo_out = get_stabilize_roll(get_of_roll(g.rc_1.control_in));
g.rc_2.servo_out = get_stabilize_pitch(get_of_pitch(g.rc_2.control_in));
#endif
break;
}
// clear new radio frame info
@ -1612,6 +1642,10 @@ static void update_navigation()
set_mode(LOITER);
auto_land_timer = millis();
}else if(current_loc.alt < (next_WP.alt - 300)){
// don't navigate if we are below our target alt
wp_control = LOITER_MODE;
}else{
// calculates desired Yaw
#if FRAME_CONFIG == HELI_FRAME
@ -1655,10 +1689,13 @@ static void update_navigation()
case LAND:
wp_control = LOITER_MODE;
if (current_loc.alt < 250){
wp_control = NO_NAV_MODE;
next_WP.alt = -200; // force us down
if(verify_land()) { // JLN fix for auto land in RTL
set_mode(STABILIZE);
} else {
// calculates the desired Roll and Pitch
update_nav_wp();
}
// calculates the desired Roll and Pitch
update_nav_wp();
break;
@ -1877,6 +1914,8 @@ static void tuning(){
g.rc_6.set_range(40,300); // 0 to .3
g.pi_rate_roll.kP(tuning_value);
g.pi_rate_pitch.kP(tuning_value);
g.pi_acro_roll.kP(tuning_value);
g.pi_acro_pitch.kP(tuning_value);
break;
case CH6_RATE_KI:
@ -1939,6 +1978,19 @@ static void tuning(){
g.rc_6.set_range(0,1000); // 0 to 1
g.pi_alt_hold.kP(tuning_value);
break;
case CH6_OPTFLOW_KP:
g.rc_6.set_range(0,10000); // 0 to 10
g.pi_optflow_roll.kP(tuning_value);
g.pi_optflow_pitch.kP(tuning_value);
break;
case CH6_OPTFLOW_KI:
g.rc_6.set_range(0,100); // 0 to 0.1
g.pi_optflow_roll.kI(tuning_value);
g.pi_optflow_pitch.kI(tuning_value);
break;
}
}
@ -2012,14 +2064,19 @@ static void update_nav_wp()
}else if(wp_control == NO_NAV_MODE){
// calc the Iterms for Loiter based on velocity
//if ((x_actual_speed + y_actual_speed) == 0)
if (g_gps->ground_speed < 50)
calc_wind_compensation();
else
reduce_wind_compensation();
#if WIND_COMP_STAB == 1
if (g_gps->ground_speed < 50)
calc_wind_compensation();
else
reduce_wind_compensation();
// rotate nav_lat, nav_lon to roll and pitch
calc_loiter_pitch_roll();
// rotate nav_lat, nav_lon to roll and pitch
calc_loiter_pitch_roll();
#else
// clear out our nav so we can do things like land straight
nav_pitch = 0;
nav_roll = 0;
#endif
}
}

View File

@ -258,6 +258,8 @@ static void reset_rate_I()
g.pi_rate_pitch.reset_I();
g.pi_acro_roll.reset_I();
g.pi_acro_pitch.reset_I();
g.pi_optflow_roll.reset_I();
g.pi_optflow_pitch.reset_I();
}
@ -429,4 +431,70 @@ static int get_z_damping()
static void init_z_damper()
{
}
#endif
#endif
// calculate modified roll/pitch depending upon optical flow values
static int32_t
get_of_roll(int32_t control_roll)
{
#ifdef OPTFLOW_ENABLED
//static int32_t of_roll = 0; // we use global variable to make logging easier
static unsigned long last_of_roll_update = 0;
static float prev_value = 0;
float x_cm;
// check if new optflow data available
if( optflow.last_update != last_of_roll_update) {
last_of_roll_update = optflow.last_update;
// filter movement
x_cm = (optflow.x_cm + prev_value) / 2.0 * 50.0;
// only stop roll if caller isn't modifying roll
if( control_roll == 0 && current_loc.alt < 1500) {
of_roll = g.pi_optflow_roll.get_pi(-x_cm, 1.0); // we could use the last update time to calculate the time change
}else{
g.pi_optflow_roll.reset_I();
prev_value = 0;
}
}
// limit maximum angle
of_roll = constrain(of_roll, -1000, 1000);
return control_roll+of_roll;
#else
return control_roll;
#endif
}
static int32_t
get_of_pitch(int32_t control_pitch)
{
#ifdef OPTFLOW_ENABLED
//static int32_t of_pitch = 0; // we use global variable to make logging easier
static unsigned long last_of_pitch_update = 0;
static float prev_value = 0;
float y_cm;
// check if new optflow data available
if( optflow.last_update != last_of_pitch_update ) {
last_of_pitch_update = optflow.last_update;
// filter movement
y_cm = (optflow.y_cm + prev_value) / 2.0 * 50.0;
// only stop roll if caller isn't modifying roll
if( control_pitch == 0 && current_loc.alt < 1500 ) {
of_pitch = g.pi_optflow_pitch.get_pi(y_cm, 1.0); // we could use the last update time to calculate the time change
}else{
g.pi_optflow_pitch.reset_I();
prev_value = 0;
}
}
// limit maximum angle
of_pitch = constrain(of_pitch, -1000, 1000);
return control_pitch+of_pitch;
#else
return control_pitch;
#endif
}

View File

@ -482,8 +482,12 @@ static void Log_Write_Optflow()
DataFlash.WriteInt((int)optflow.dx);
DataFlash.WriteInt((int)optflow.dy);
DataFlash.WriteInt((int)optflow.surface_quality);
DataFlash.WriteInt((int)optflow.x_cm);
DataFlash.WriteInt((int)optflow.y_cm);
DataFlash.WriteLong(optflow.vlat);//optflow_offset.lat + optflow.lat);
DataFlash.WriteLong(optflow.vlon);//optflow_offset.lng + optflow.lng);
DataFlash.WriteLong(of_roll);
DataFlash.WriteLong(of_pitch);
DataFlash.WriteByte(END_BYTE);
#endif
}
@ -495,15 +499,23 @@ static void Log_Read_Optflow()
int16_t temp1 = DataFlash.ReadInt(); // 1
int16_t temp2 = DataFlash.ReadInt(); // 2
int16_t temp3 = DataFlash.ReadInt(); // 3
float temp4 = DataFlash.ReadLong(); // 4
float temp5 = DataFlash.ReadLong(); // 5
int16_t temp4 = DataFlash.ReadInt(); // 4
int16_t temp5 = DataFlash.ReadInt(); // 5
float temp6 = DataFlash.ReadLong(); // 6
float temp7 = DataFlash.ReadLong(); // 7
int32_t temp8 = DataFlash.ReadLong(); // 8
int32_t temp9 = DataFlash.ReadLong(); // 9
Serial.printf_P(PSTR("OF, %d, %d, %d, %4.7f, %4.7f\n"),
Serial.printf_P(PSTR("OF, %d, %d, %d, %d, %d, %4.7f, %4.7f, %d, %d\n"),
temp1,
temp2,
temp3,
temp4,
temp5);
temp5,
temp6,
temp7,
temp8,
temp9);
#endif
}

View File

@ -178,6 +178,8 @@ public:
k_param_pi_throttle,
k_param_pi_acro_roll,
k_param_pi_acro_pitch,
k_param_pi_optflow_roll,
k_param_pi_optflow_pitch, // 250
// 254,255: reserved
@ -298,6 +300,9 @@ public:
APM_PI pi_acro_roll;
APM_PI pi_acro_pitch;
APM_PI pi_optflow_roll;
APM_PI pi_optflow_pitch;
uint8_t junk;
// Note: keep initializers here in the same order as they are declared above.
@ -417,6 +422,9 @@ public:
pi_acro_roll (k_param_pi_acro_roll, PSTR("ACRO_RLL_"), ACRO_ROLL_P, ACRO_ROLL_I, ACRO_ROLL_IMAX * 100),
pi_acro_pitch (k_param_pi_acro_pitch, PSTR("ACRO_PIT_"), ACRO_PITCH_P, ACRO_PITCH_I, ACRO_PITCH_IMAX * 100),
pi_optflow_roll (k_param_pi_optflow_roll, PSTR("OF_RLL_"), OPTFLOW_ROLL_P, OPTFLOW_ROLL_I, OPTFLOW_IMAX * 100),
pi_optflow_pitch (k_param_pi_optflow_pitch, PSTR("OF_PIT_"), OPTFLOW_PITCH_P, OPTFLOW_PITCH_I, OPTFLOW_IMAX * 100),
junk(0) // XXX just so that we can add things without worrying about the trailing comma
{
}

View File

@ -348,7 +348,7 @@ static bool verify_land()
static int16_t velocity_land = -1;
// land at .62 meter per second
next_WP.alt = original_alt - ((millis() - land_start) / 16); // condition_value = our initial
next_WP.alt = original_alt - ((millis() - land_start) / 32); // condition_value = our initial
if (old_alt == 0)
old_alt = current_loc.alt;
@ -357,15 +357,17 @@ static bool verify_land()
velocity_land = 2000;
if ((current_loc.alt - home.alt) < 500){
if ((current_loc.alt - home.alt) < 300){
// a LP filter used to tell if we have landed
// will drive to 0 if we are on the ground - maybe, the baro is noisy
velocity_land = ((velocity_land * 7) + (old_alt - current_loc.alt)) / 8;
}
// remenber altitude for climb_rate
old_alt = current_loc.alt;
if ((current_loc.alt - home.alt) < 300){
if ((current_loc.alt - home.alt) < 200){
// don't bank to hold position
wp_control = NO_NAV_MODE;
// Update by JLN for a safe AUTO landing
@ -375,21 +377,14 @@ static bool verify_land()
g.pi_throttle.reset_I();
}
if(g.sonar_enabled){
// decide which sensor we're using
if(sonar_alt < 40){
land_complete = true;
//Serial.println("Y");
return true;
}
}
if((current_loc.alt - home.alt) < 300 && velocity_land <= 100){
if((current_loc.alt - home.alt) < 100 && velocity_land <= 100){
land_complete = true;
// reset manual_boost hack
manual_boost = 0;
// reset old_alt
old_alt = 0;
init_disarm_motors();
return true;
return false;
}
//Serial.printf("N, %d\n", velocity_land);
//Serial.printf("N_alt, %ld\n", next_WP.alt);

View File

@ -58,7 +58,16 @@ static void update_commands()
command_nav_queue.id = NO_COMMAND;
}
}else{
// we are out of commands
g.command_index = command_nav_index = 255;
// if we are on the ground, enter stabilize, else Land
if (land_complete == true){
set_mode(STABILIZE);
// disarm motors
//init_disarm_motors();
} else {
set_mode(LAND);
}
}
}

View File

@ -65,10 +65,10 @@
// FRAME_CONFIG
//
#ifndef FRAME_CONFIG
# define FRAME_CONFIG QUAD_FRAME
# define FRAME_CONFIG QUAD_FRAME
#endif
#ifndef FRAME_ORIENTATION
# define FRAME_ORIENTATION PLUS_FRAME
# define FRAME_ORIENTATION X_FRAME
#endif
//////////////////////////////////////////////////////////////////////////////
@ -170,7 +170,7 @@
# endif
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
# ifndef CONFIG_SONAR_SOURCE_ANALOG_PIN
# define CONFIG_SONAR_SOURCE_ANALOG_PIN AN4
# define CONFIG_SONAR_SOURCE_ANALOG_PIN A1
# endif
#else
# warning Invalid value for CONFIG_SONAR_SOURCE, disabling sonar
@ -310,6 +310,23 @@
#ifndef OPTFLOW_FOV
# define OPTFLOW_FOV AP_OPTICALFLOW_ADNS3080_08_FOV
#endif
// optical flow based loiter PI values
#ifndef OPTFLOW_ROLL_P
#define OPTFLOW_ROLL_P 6.4
#endif
#ifndef OPTFLOW_ROLL_I
#define OPTFLOW_ROLL_I 0.068
#endif
#ifndef OPTFLOW_PITCH_P
#define OPTFLOW_PITCH_P 6.4
#endif
#ifndef OPTFLOW_PITCH_I
#define OPTFLOW_PITCH_I 0.068
#endif
#ifndef OPTFLOW_IMAX
#define OPTFLOW_IMAX 4
#endif
//////////////////////////////////////////////////////////////////////////////
// RADIO CONFIGURATION
@ -468,6 +485,11 @@
#endif
// experimental feature for
#ifndef WIND_COMP_STAB
# define WIND_COMP_STAB 0
#endif
//////////////////////////////////////////////////////////////////////////////

View File

@ -18,6 +18,7 @@
#define ROLL_PITCH_STABLE 0
#define ROLL_PITCH_ACRO 1
#define ROLL_PITCH_AUTO 2
#define ROLL_PITCH_STABLE_OF 3
#define THROTTLE_MANUAL 0
#define THROTTLE_HOLD 1
@ -155,6 +156,10 @@
#define CH6_Z_GAIN 15
#define CH6_DAMP 16
// optical flow controller
#define CH6_OPTFLOW_KP 17
#define CH6_OPTFLOW_KI 18
// nav byte mask
// -------------
@ -283,8 +288,8 @@ enum gcs_severity {
#define ALTITUDE_HISTORY_LENGTH 8 //Number of (time,altitude) points to regress a climb rate from
#define BATTERY_VOLTAGE(x) (x*(g.input_voltage/1024.0))*VOLT_DIV_RATIO
#define CURRENT_AMPS(x) ((x*(g.input_voltage/1024.0))-CURR_AMPS_OFFSET)*CURR_AMP_PER_VOLT
#define BATTERY_VOLTAGE(x) (x*(g.input_voltage/1023.0))*VOLT_DIV_RATIO
#define CURRENT_AMPS(x) ((x*(g.input_voltage/1023.0))-CURR_AMPS_OFFSET)*CURR_AMP_PER_VOLT
//#define BARO_FILTER_SIZE 8
/* ************************************************************** */

View File

@ -195,7 +195,7 @@ static void calc_loiter_pitch_roll()
nav_pitch = -nav_pitch;
}
// what's the update rate? 10hz GPS?
#if WIND_COMP_STAB == 1
static void calc_wind_compensation()
{
// this idea is a function that converts user input into I term for position hold
@ -216,8 +216,25 @@ static void calc_wind_compensation()
// filter the input and apply it to out integrator value
// nav_lon and nav_lat will be applied to normal flight
nav_lon = ((int32_t)g.pi_loiter_lon.get_integrator() * 15 + roll_tmp) / 16;
nav_lat = ((int32_t)g.pi_loiter_lat.get_integrator() * 15 + pitch_tmp) / 16;
// This filter is far too fast!!!
//nav_lon = ((int32_t)g.pi_loiter_lon.get_integrator() * 15 + roll_tmp) / 16;
//nav_lat = ((int32_t)g.pi_loiter_lat.get_integrator() * 15 + pitch_tmp) / 16;
nav_lon = g.pi_loiter_lon.get_integrator();
nav_lat = g.pi_loiter_lat.get_integrator();
// Maybe a slower filter would work?
if(g.pi_loiter_lon.get_integrator() > roll_tmp){
g.pi_loiter_lon.set_integrator(nav_lon - 5);
}else if(g.pi_loiter_lon.get_integrator() < roll_tmp){
g.pi_loiter_lon.set_integrator(nav_lon + 5);
}
if(g.pi_loiter_lat.get_integrator() > pitch_tmp){
g.pi_loiter_lat.set_integrator(nav_lat - 5);
}else if(g.pi_loiter_lat.get_integrator() < pitch_tmp){
g.pi_loiter_lat.set_integrator(nav_lat + 5);
}
// save smoothed input to integrator
g.pi_loiter_lon.set_integrator(nav_lon); // X
@ -243,16 +260,15 @@ static void reduce_wind_compensation()
tmp *= .98;
g.pi_loiter_lat.set_integrator(tmp); // Y
#if 0
// debug
int16_t t1 = g.pi_loiter_lon.get_integrator();
int16_t t2 = g.pi_loiter_lon.get_integrator();
//int16_t t1 = g.pi_loiter_lon.get_integrator();
//int16_t t2 = g.pi_loiter_lon.get_integrator();
//Serial.printf("reduce wind iterm X:%d Y:%d \n",
// t1,
// t2);
#endif
}
#endif
static int16_t calc_desired_speed(int16_t max_speed)
{

View File

@ -380,6 +380,8 @@ static void reset_I_all(void)
g.pi_throttle.reset_I();
g.pi_acro_roll.reset_I();
g.pi_acro_pitch.reset_I();
g.pi_optflow_roll.reset_I();
g.pi_optflow_pitch.reset_I();
}
@ -426,10 +428,11 @@ static void startup_ground(void)
static void set_mode(byte mode)
{
if(control_mode == mode){
//if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
// Serial.print("Double mode\n");
//return;
//}
// if we don't have GPS lock
if(home_is_set == false){
@ -458,6 +461,9 @@ static void set_mode(byte mode)
// do not auto_land if we are leaving RTL
auto_land_timer = 0;
// if we change modes, we must clear landed flag
land_complete = false;
// debug to Serial terminal
Serial.println(flight_mode_strings[control_mode]);
@ -531,12 +537,10 @@ static void set_mode(byte mode)
break;
case LAND:
land_complete = false;
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_AUTO;
yaw_mode = LOITER_YAW;
roll_pitch_mode = LOITER_RP;
throttle_mode = THROTTLE_AUTO;
next_WP = current_loc;
next_WP.alt = 0;
do_land();
break;
case RTL:

View File

@ -6,7 +6,9 @@
// For example if you wanted the Port 3 baud rate to be 38400 you would add a statement like the one below (uncommented)
//#define SERIAL3_BAUD 38400
# define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
// # define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
// # define APM2_BETA_HARDWARE
// You may also put an include statement here to point at another configuration file. This is convenient if you maintain
// different configuration files for different aircraft or HIL simulation. See the examples below

View File

@ -413,8 +413,9 @@ static void do_wait_delay()
static void do_change_alt()
{
condition_rate = next_nonnav_command.lat;
condition_rate = abs((int)next_nonnav_command.lat);
condition_value = next_nonnav_command.alt;
if(condition_value < current_loc.alt) condition_rate = -condition_rate;
target_altitude = current_loc.alt + (condition_rate / 10); // Divide by ten for 10Hz update
next_WP.alt = condition_value; // For future nav calculations
offset_altitude = 0; // For future nav calculations

View File

@ -50,7 +50,7 @@ def takeoff(mavproxy, mav, alt_min = 30):
'''takeoff get to 30m altitude'''
mavproxy.send('switch 6\n') # stabilize mode
wait_mode(mav, 'STABILIZE')
mavproxy.send('rc 3 1500\n')
mavproxy.send('rc 3 1510\n')
m = mav.recv_match(type='VFR_HUD', blocking=True)
if (m.alt < alt_min):
wait_altitude(mav, alt_min, (alt_min + 5))
@ -208,7 +208,7 @@ def fly_simple(mavproxy, mav, side=60, timeout=120):
'''fly Simple, flying N then E'''
mavproxy.send('switch 6\n')
wait_mode(mav, 'STABILIZE')
mavproxy.send('rc 3 1430\n')
mavproxy.send('rc 3 1450\n')
tstart = time.time()
failed = False
@ -374,8 +374,9 @@ def fly_ArduCopter(viewerip=None):
os.unlink(buildlog)
os.link(logfile, buildlog)
mavproxy.expect('Received [0-9]+ parameters')
mavproxy.expect("Ready to FLY")
# the received parameters can come before or after the ready to fly message
mavproxy.expect(['Received [0-9]+ parameters', 'Ready to FLY'])
mavproxy.expect(['Received [0-9]+ parameters', 'Ready to FLY'])
util.expect_setup_callback(mavproxy, expect_callback)

View File

@ -11,11 +11,11 @@ body {
margin:0px;
padding:0px;
background-color: #fff;
background-image: url(images/bg.png);
background-image: url(/images/bg.png);
}
#logo {
background-image:url(images/logo.png);
background-image:url(/images/logo.png);
background-repeat:no-repeat;
height: 120px;
width: 420px;

View File

@ -4,7 +4,7 @@
<title>ArduPilot Automatic Testing</title>
<!--CSS -->
<link href="css/main.css" rel="stylesheet" type="text/css" />
<link href="/css/main.css" rel="stylesheet" type="text/css" />
</head>
<body>

View File

@ -10,9 +10,14 @@
#define HEAD_BYTE1 0xA3
#define HEAD_BYTE2 0x95
// NOTE: You must uncomment one of the following two lines
DataFlash_APM2 DataFlash; // Uncomment this line if using APM2 hardware
//DataFlash_APM1 DataFlash; // Uncomment this line if using APM1 hardware
void setup()
{
Serial.begin(38400);
Serial.begin(115200);
DataFlash.Init(); // DataFlash initialization
Serial.println("Dataflash Log Test 1.0");
@ -24,14 +29,14 @@ void setup()
Serial.print("Manufacturer:");
Serial.print(int(DataFlash.df_manufacturer));
Serial.print(",");
Serial.print(int(DataFlash.df_device_0));
Serial.print(",");
Serial.print(int(DataFlash.df_device_1));
Serial.print(DataFlash.df_device);
Serial.println();
// We start to write some info (sequentialy) starting from page 1
// This is similar to what we will do...
DataFlash.StartWrite(1);
Serial.println("After testing perform erase before using DataFlash for logging!");
Serial.println("");
Serial.println("Writing to flash... wait...");
for (int i = 0; i < 1000; i++){ // Write 1000 packets...
// We write packets of binary data... (without worry about nothing more)
@ -96,5 +101,8 @@ void loop()
}
Serial.println();
}
delay(10000);
Serial.println("");
Serial.println("Test complete. Test will repeat in 20 seconds");
Serial.println("");
delay(20000);
}