AP_KDECAN: total re-write using CANSensor and remove Enum

This commit is contained in:
Tom Pittenger 2023-04-10 16:36:52 -07:00 committed by Andrew Tridgell
parent 84b7444047
commit c585b0286d
3 changed files with 344 additions and 641 deletions

View File

@ -15,36 +15,24 @@
/* /*
* AP_KDECAN.cpp * AP_KDECAN.cpp
* *
* Author: Francisco Ferreira * Author: Francisco Ferreira and Tom Pittenger
*/ */
#include <AP_HAL/AP_HAL.h> #include "AP_KDECAN.h"
#include <AP_Common/AP_Common.h>
#include <AP_HAL/utility/sparse-endian.h>
#if AP_KDECAN_ENABLED
#include <stdio.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_HAL/utility/sparse-endian.h>
#include <SRV_Channel/SRV_Channel.h> #include <SRV_Channel/SRV_Channel.h>
#include <GCS_MAVLink/GCS.h> #include <GCS_MAVLink/GCS.h>
#include <AP_Scheduler/AP_Scheduler.h> #include <AP_Math/AP_Math.h> // for MIN,MAX
#include <AP_Math/AP_Math.h>
#include <AP_Motors/AP_Motors.h>
#include <AP_Logger/AP_Logger.h>
#include <stdio.h>
#include "AP_KDECAN.h"
#include <AP_CANManager/AP_CANManager.h>
#if HAL_MAX_CAN_PROTOCOL_DRIVERS
extern const AP_HAL::HAL& hal; extern const AP_HAL::HAL& hal;
#if HAL_CANMANAGER_ENABLED
#define debug_can(level_debug, fmt, args...) do { AP::can().log_text(level_debug, "KDECAN", fmt, ##args); } while (0)
#else
#define debug_can(level_debug, fmt, args...)
#endif
#define DEFAULT_NUM_POLES 14
// table of user settable CAN bus parameters // table of user settable CAN bus parameters
const AP_Param::GroupInfo AP_KDECAN::var_info[] = { const AP_Param::GroupInfo AP_KDECAN::var_info[] = {
// @Param: NPOLE // @Param: NPOLE
// @DisplayName: Number of motor poles // @DisplayName: Number of motor poles
// @Description: Sets the number of motor poles to calculate the correct RPM value // @Description: Sets the number of motor poles to calculate the correct RPM value
@ -53,603 +41,282 @@ const AP_Param::GroupInfo AP_KDECAN::var_info[] = {
AP_GROUPEND AP_GROUPEND
}; };
const uint16_t AP_KDECAN::SET_PWM_MIN_INTERVAL_US;
AP_KDECAN::AP_KDECAN() AP_KDECAN::AP_KDECAN()
{ {
AP_Param::setup_object_defaults(this, var_info); AP_Param::setup_object_defaults(this, var_info);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
debug_can(AP_CANManager::LOG_INFO, "constructed"); if (_singleton != nullptr) {
AP_HAL::panic("AP_KDECAN must be singleton");
}
#endif
_singleton = this;
} }
AP_KDECAN *AP_KDECAN::get_kdecan(uint8_t driver_index) void AP_KDECAN::init()
{ {
if (driver_index >= AP::can().get_num_drivers() || if (_driver != nullptr) {
AP::can().get_driver_type(driver_index) != AP_CANManager::Driver_Type_KDECAN) { // only allow one instance
return nullptr;
}
return static_cast<AP_KDECAN*>(AP::can().get_driver(driver_index));
}
bool AP_KDECAN::add_interface(AP_HAL::CANIface* can_iface) {
if (_can_iface != nullptr) {
debug_can(AP_CANManager::LOG_ERROR, "Multiple Interface not supported");
return false;
}
_can_iface = can_iface;
if (_can_iface == nullptr) {
debug_can(AP_CANManager::LOG_ERROR, "CAN driver not found");
return false;
}
if (!_can_iface->is_initialized()) {
debug_can(AP_CANManager::LOG_ERROR, "Driver not initialized");
return false;
}
if (!_can_iface->set_event_handle(&_event_handle)) {
debug_can(AP_CANManager::LOG_ERROR, "Cannot add event handle");
return false;
}
return true;
}
void AP_KDECAN::init(uint8_t driver_index, bool enable_filters)
{
_driver_index = driver_index;
debug_can(AP_CANManager::LOG_INFO, "starting init");
if (_initialized) {
debug_can(AP_CANManager::LOG_ERROR, "already initialized");
return; return;
} }
if (_can_iface == nullptr) { AP_CANManager::Driver_Type protocol = AP_CANManager::Driver_Type_None;
debug_can(AP_CANManager::LOG_ERROR, "Interface not found");
return; for (uint8_t i = 0; i < HAL_NUM_CAN_IFACES; i++) {
} #if HAL_CANMANAGER_ENABLED
protocol = AP::can().get_driver_type(i);
// find available KDE ESCs #elif defined(HAL_BUILD_AP_PERIPH)
frame_id_t id = { { .object_address = ESC_INFO_OBJ_ADDR, protocol = CANSensor::get_driver_type(i);
.destination_id = BROADCAST_NODE_ID, #endif
.source_id = AUTOPILOT_NODE_ID, if (protocol == AP_CANManager::Driver_Type_KDECAN) {
.priority = 0, _driver = new AP_KDECAN_Driver();
.unused = 0 } }; return;
AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), nullptr, 0 };
if(!_can_iface->send(frame, AP_HAL::micros() + 1000000, 0)) {
debug_can(AP_CANManager::LOG_DEBUG, "couldn't send discovery message");
return;
}
debug_can(AP_CANManager::LOG_DEBUG, "discovery message sent");
uint32_t start = AP_HAL::millis();
// wait 1 second for answers
while (AP_HAL::millis() - start < 1000) {
AP_HAL::CANFrame esc_id_frame {};
uint64_t rx_time;
AP_HAL::CANIface::CanIOFlags flags = 0;
int16_t n = _can_iface->receive(esc_id_frame, rx_time, flags);
if (n != 1) {
continue;
}
if (!esc_id_frame.isExtended()) {
continue;
}
if (esc_id_frame.dlc != 5) {
continue;
}
id.value = esc_id_frame.id & AP_HAL::CANFrame::MaskExtID;
if (id.source_id == BROADCAST_NODE_ID ||
id.source_id >= (KDECAN_MAX_NUM_ESCS + ESC_NODE_ID_FIRST) ||
id.destination_id != AUTOPILOT_NODE_ID ||
id.object_address != ESC_INFO_OBJ_ADDR) {
continue;
}
_esc_present_bitmask |= (1 << (id.source_id - ESC_NODE_ID_FIRST));
_esc_max_node_id = id.source_id - ESC_NODE_ID_FIRST + 1;
debug_can(AP_CANManager::LOG_DEBUG, "found ESC id %u", id.source_id);
}
snprintf(_thread_name, sizeof(_thread_name), "kdecan_%u", driver_index);
// start thread for receiving and sending CAN frames
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_KDECAN::loop, void), _thread_name, 4096, AP_HAL::Scheduler::PRIORITY_CAN, 0)) {
debug_can(AP_CANManager::LOG_ERROR, "couldn't create thread");
return;
}
_initialized = true;
debug_can(AP_CANManager::LOG_DEBUG, "init done");
return;
}
void AP_KDECAN::loop()
{
uint64_t timeout;
uint16_t output_buffer[KDECAN_MAX_NUM_ESCS] {};
enumeration_state_t enumeration_state = _enumeration_state;
uint64_t enumeration_start = 0;
uint8_t enumeration_esc_num = 0;
const uint32_t LOOP_INTERVAL_US = MIN(AP::scheduler().get_loop_period_us(), SET_PWM_MIN_INTERVAL_US);
uint64_t pwm_last_sent = 0;
uint8_t sending_esc_num = 0;
uint64_t telemetry_last_request = 0;
AP_HAL::CANFrame empty_frame { (0 | AP_HAL::CANFrame::FlagEFF), nullptr, 0 };
while (true) {
if (!_initialized) {
debug_can(AP_CANManager::LOG_ERROR, "not initialized");
hal.scheduler->delay_microseconds(2000);
continue;
}
uint64_t now = AP_HAL::micros64();
bool read_select;
bool write_select;
bool select_ret;
// get latest enumeration state set from GCS
if (_enum_sem.take(1)) {
enumeration_state = _enumeration_state;
_enum_sem.give();
} else {
debug_can(AP_CANManager::LOG_DEBUG, "failed to get enumeration semaphore on loop");
}
if (enumeration_state != ENUMERATION_STOPPED) {
// check if enumeration timed out
if (enumeration_start != 0 && now - enumeration_start >= ENUMERATION_TIMEOUT_MS * 1000) {
enumeration_start = 0;
WITH_SEMAPHORE(_enum_sem);
// check if enumeration state didn't change or was set to stop
if (enumeration_state == _enumeration_state || _enumeration_state == ENUMERATION_STOP) {
enumeration_state = _enumeration_state = ENUMERATION_STOPPED;
}
continue;
}
timeout = now + 1000;
switch (enumeration_state) {
case ENUMERATION_START: {
// send broadcast frame to start enumeration
frame_id_t id = { { .object_address = ENUM_OBJ_ADDR,
.destination_id = BROADCAST_NODE_ID,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
be16_t data = htobe16((uint16_t) ENUMERATION_TIMEOUT_MS);
AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), (uint8_t*) &data, sizeof(data) };
// wait for write space to be available
read_select = false;
write_select = true;
select_ret = _can_iface->select(read_select, write_select, &frame, timeout);
if (select_ret && write_select) {
now = AP_HAL::micros64();
timeout = now + ENUMERATION_TIMEOUT_MS * 1000;
int8_t res = _can_iface->send(frame, timeout, 0);
if (res == 1) {
enumeration_start = now;
enumeration_esc_num = 0;
_esc_present_bitmask = 0;
_esc_max_node_id = 0;
WITH_SEMAPHORE(_enum_sem);
if (enumeration_state == _enumeration_state) {
enumeration_state = _enumeration_state = ENUMERATION_RUNNING;
}
} else if (res == 0) {
debug_can(AP_CANManager::LOG_ERROR, "strange buffer full when starting ESC enumeration");
break;
} else {
debug_can(AP_CANManager::LOG_ERROR, "error sending message to start ESC enumeration, result %d", res);
break;
}
} else {
break;
}
FALLTHROUGH;
}
case ENUMERATION_RUNNING: {
// wait for enumeration messages from ESCs
// wait for read data to be available
read_select = true;
write_select = false;
select_ret = _can_iface->select(read_select, write_select, nullptr, timeout);
if (select_ret && read_select) {
AP_HAL::CANFrame recv_frame;
uint64_t rx_time;
AP_HAL::CANIface::CanIOFlags flags {};
int16_t res = _can_iface->receive(recv_frame, rx_time, flags);
if (res == 1) {
frame_id_t id { .value = recv_frame.id & AP_HAL::CANFrame::MaskExtID };
if (rx_time < enumeration_start) {
// old message
debug_can(AP_CANManager::LOG_DEBUG, "Received old message from ESC id %u", id.source_id);
break;
}
if (id.object_address == UPDATE_NODE_ID_OBJ_ADDR) {
// reply from setting new node ID
_esc_present_bitmask |= 1 << (id.source_id - ESC_NODE_ID_FIRST);
_esc_max_node_id = MAX(_esc_max_node_id, id.source_id - ESC_NODE_ID_FIRST + 1);
debug_can(AP_CANManager::LOG_DEBUG, "found ESC id %u", id.source_id);
break;
} else if (id.object_address != ENUM_OBJ_ADDR) {
// discardable frame, only looking for enumeration
break;
}
// try to set node ID for the received ESC
while (AP_HAL::micros64() - enumeration_start < ENUMERATION_TIMEOUT_MS * 1000) {
// wait for write space to be available
id = { { .object_address = UPDATE_NODE_ID_OBJ_ADDR,
.destination_id = uint8_t(enumeration_esc_num + ESC_NODE_ID_FIRST),
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
AP_HAL::CANFrame send_frame { (id.value | AP_HAL::CANFrame::FlagEFF), (uint8_t*) &recv_frame.data, recv_frame.dlc };
read_select = false;
write_select = true;
select_ret = _can_iface->select(read_select, write_select, &send_frame, timeout);
if (select_ret && write_select) {
timeout = enumeration_start + ENUMERATION_TIMEOUT_MS * 1000;
res = _can_iface->send(send_frame, timeout, 0);
if (res == 1) {
enumeration_esc_num++;
break;
} else if (res == 0) {
debug_can(AP_CANManager::LOG_ERROR, "strange buffer full when setting ESC node ID");
} else {
debug_can(AP_CANManager::LOG_ERROR, "error sending message to set ESC node ID, result %d", res);
}
}
}
} else if (res == 0) {
debug_can(AP_CANManager::LOG_ERROR, "strange failed read when getting ESC enumeration message");
} else {
debug_can(AP_CANManager::LOG_ERROR, "error receiving ESC enumeration message, result %d", res);
}
}
break;
}
case ENUMERATION_STOP: {
// send broadcast frame to stop enumeration
frame_id_t id = { { .object_address = ENUM_OBJ_ADDR,
.destination_id = BROADCAST_NODE_ID,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
le16_t data = htole16((uint16_t) ENUMERATION_TIMEOUT_MS);
AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), (uint8_t*) &data, sizeof(data) };
// wait for write space to be available
read_select = false;
write_select = true;
select_ret = _can_iface->select(read_select, read_select, &frame, timeout);
if (select_ret && write_select) {
timeout = enumeration_start + ENUMERATION_TIMEOUT_MS * 1000;
int8_t res = _can_iface->send(frame, timeout, 0);
if (res == 1) {
enumeration_start = 0;
WITH_SEMAPHORE(_enum_sem);
if (enumeration_state == _enumeration_state) {
enumeration_state = _enumeration_state = ENUMERATION_STOPPED;
}
} else if (res == 0) {
debug_can(AP_CANManager::LOG_ERROR, "strange buffer full when stop ESC enumeration");
} else {
debug_can(AP_CANManager::LOG_ERROR, "error sending message to stop ESC enumeration, result %d", res);
}
}
break;
}
case ENUMERATION_STOPPED:
default:
debug_can(AP_CANManager::LOG_DEBUG, "something wrong happened, shouldn't be here, enumeration state: %u", enumeration_state);
break;
}
continue;
}
if (!_esc_present_bitmask) {
hal.scheduler->delay(1000);
continue;
}
// always look for received frames
timeout = now + LOOP_INTERVAL_US;
// check if:
// - is currently sending throttle frames, OR
// - there are new output values and, a throttle frame was never sent or it's no longer in CAN queue, OR
// - it is time to send throttle frames again, regardless of new output values, OR
// - it is time to ask for telemetry information
bool try_write = false;
if (sending_esc_num > 0 ||
(_new_output.load(std::memory_order_acquire) && (pwm_last_sent == 0 || now - pwm_last_sent > SET_PWM_TIMEOUT_US)) ||
(pwm_last_sent != 0 && (now - pwm_last_sent > SET_PWM_MIN_INTERVAL_US)) ||
(now - telemetry_last_request > TELEMETRY_INTERVAL_US)) {
// wait for write space or receive frame
try_write = true;
} else { // don't need to send frame, choose the maximum time we'll wait for receiving a frame
uint64_t next_action = MIN(now + LOOP_INTERVAL_US, telemetry_last_request + TELEMETRY_INTERVAL_US);
if (pwm_last_sent != 0) {
next_action = MIN(next_action, pwm_last_sent + SET_PWM_MIN_INTERVAL_US);
}
timeout = next_action;
}
read_select = true;
write_select = try_write;
// Immediately check if rx buffer not empty
select_ret = _can_iface->select(read_select, write_select, &empty_frame, timeout);
if (select_ret && read_select) {
AP_HAL::CANFrame frame;
uint64_t rx_time;
AP_HAL::CANIface::CanIOFlags flags {};
int16_t res = _can_iface->receive(frame, rx_time, flags);
if (res == 1) {
#if HAL_WITH_ESC_TELEM
frame_id_t id { .value = frame.id & AP_HAL::CANFrame::MaskExtID };
// check if frame is valid: directed at autopilot, doesn't come from broadcast and ESC was detected before
if (id.destination_id == AUTOPILOT_NODE_ID &&
id.source_id != BROADCAST_NODE_ID &&
(1 << (id.source_id - ESC_NODE_ID_FIRST) & _esc_present_bitmask)) {
switch (id.object_address) {
case TELEMETRY_OBJ_ADDR: {
if (frame.dlc != 8) {
break;
}
const uint8_t idx = id.source_id - ESC_NODE_ID_FIRST;
const uint8_t num_poles = _num_poles > 0 ? _num_poles : DEFAULT_NUM_POLES;
update_rpm(idx, uint16_t(uint16_t(frame.data[4] << 8 | frame.data[5]) * 60UL * 2 / num_poles));
TelemetryData t {
.temperature_cdeg = int16_t(frame.data[6] * 100),
.voltage = float(uint16_t(frame.data[0] << 8 | frame.data[1])) * 0.01f,
.current = float(uint16_t(frame.data[2] << 8 | frame.data[3])) * 0.01f,
};
update_telem_data(idx, t,
AP_ESC_Telem_Backend::TelemetryType::CURRENT
| AP_ESC_Telem_Backend::TelemetryType::VOLTAGE
| AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
break;
}
default:
// discard frame
break;
}
}
#endif // HAL_WITH_ESC_TELEM
}
}
if (select_ret && try_write && write_select) {
now = AP_HAL::micros64();
bool new_output = _new_output.load(std::memory_order_acquire);
if (sending_esc_num > 0) {
// currently sending throttle frames, check it didn't timeout
if (now - pwm_last_sent > SET_PWM_TIMEOUT_US) {
debug_can(AP_CANManager::LOG_DEBUG, "timed-out after sending frame to ESC with ID %d", sending_esc_num - 1);
sending_esc_num = 0;
}
}
if (sending_esc_num == 0 && new_output) {
if (!_rc_out_sem.take(1)) {
debug_can(AP_CANManager::LOG_ERROR, "failed to get PWM semaphore on read");
continue;
}
memcpy(output_buffer, _scaled_output, KDECAN_MAX_NUM_ESCS * sizeof(uint16_t));
_rc_out_sem.give();
}
// check if:
// - is currently sending throttle frames, OR
// - there are new output values and, a throttle frame was never sent or it's no longer in CAN queue, OR
// - it is time to send throttle frames again, regardless of new output values
if (sending_esc_num > 0 ||
(new_output && (pwm_last_sent == 0 || now - pwm_last_sent > SET_PWM_TIMEOUT_US)) ||
(pwm_last_sent != 0 && (now - pwm_last_sent > SET_PWM_MIN_INTERVAL_US))) {
for (uint8_t esc_num = sending_esc_num; esc_num < _esc_max_node_id; esc_num++) {
if ((_esc_present_bitmask & (1 << esc_num)) == 0) {
continue;
}
be16_t kde_pwm = htobe16(output_buffer[esc_num]);
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
kde_pwm = 0;
}
frame_id_t id = { { .object_address = SET_PWM_OBJ_ADDR,
.destination_id = uint8_t(esc_num + ESC_NODE_ID_FIRST),
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), (uint8_t*) &kde_pwm, sizeof(kde_pwm) };
if (esc_num == 0) {
timeout = now + SET_PWM_TIMEOUT_US;
} else {
timeout = pwm_last_sent + SET_PWM_TIMEOUT_US;
}
int16_t res = _can_iface->send(frame, timeout, 0);
if (res == 1) {
if (esc_num == 0) {
pwm_last_sent = now;
if (new_output) {
_new_output.store(false, std::memory_order_release);
}
}
sending_esc_num = (esc_num + 1) % _esc_max_node_id;
} else {
debug_can(AP_CANManager::LOG_ERROR, "error sending message to ESC with ID %d, result %d", esc_num + ESC_NODE_ID_FIRST, res);
}
break;
}
} else if (now - telemetry_last_request > TELEMETRY_INTERVAL_US) {
// broadcast telemetry request frame
frame_id_t id = { { .object_address = TELEMETRY_OBJ_ADDR,
.destination_id = BROADCAST_NODE_ID,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), nullptr, 0 };
timeout = now + TELEMETRY_TIMEOUT_US;
int16_t res = _can_iface->send(frame, timeout, 0);
if (res == 1) {
telemetry_last_request = now;
} else if (res == 0) {
debug_can(AP_CANManager::LOG_ERROR, "strange buffer full when sending message requesting telemetry");
} else {
debug_can(AP_CANManager::LOG_ERROR, "error sending message requesting telemetry, result %d", res);
}
}
} }
} }
} }
void AP_KDECAN::update() void AP_KDECAN::update()
{ {
if (_rc_out_sem.take(1)) { if (_driver == nullptr) {
for (uint8_t i = 0; i < KDECAN_MAX_NUM_ESCS; i++) { return;
if ((_esc_present_bitmask & (1 << i)) == 0) { }
_scaled_output[i] = 0; _driver->update((uint8_t)_num_poles.get());
continue; }
AP_KDECAN_Driver::AP_KDECAN_Driver() : CANSensor("KDECAN")
{
register_driver(AP_CANManager::Driver_Type_KDECAN);
// start thread for receiving and sending CAN frames
hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_KDECAN_Driver::loop, void), "kdecan", 4096, AP_HAL::Scheduler::PRIORITY_CAN, 0);
}
// parse inbound frames
void AP_KDECAN_Driver::handle_frame(AP_HAL::CANFrame &frame)
{
if (!frame.isExtended()) {
return;
}
const frame_id_t id { .value = frame.id & AP_HAL::CANFrame::MaskExtID };
// if (id.object_address != TELEMETRY_OBJ_ADDR) {
// GCS_SEND_TEXT(MAV_SEVERITY_DEBUG,"KDECAN: rx id:%d, src:%d, dest:%d, len:%d", (int)id.object_address, (int)id.source_id, (int)id.destination_id, (int)frame.dlc);
// }
// check if frame is valid: directed at autopilot, doesn't come from broadcast and ESC was detected before
switch (id.object_address) {
case ESC_INFO_OBJ_ADDR:
if (frame.dlc == 5 &&
id.destination_id == AUTOPILOT_NODE_ID &&
id.source_id >= ESC_NODE_ID_FIRST &&
id.source_id < (KDECAN_MAX_NUM_ESCS + ESC_NODE_ID_FIRST))
{
const uint16_t bitmask = (1U << (id.source_id - ESC_NODE_ID_FIRST));
if ((bitmask & _init.detected_bitmask) != bitmask) {
_init.detected_bitmask |= bitmask;
GCS_SEND_TEXT(MAV_SEVERITY_INFO,"KDECAN: Found ESC id %u", id.source_id);
}
}
break;
#if HAL_WITH_ESC_TELEM
case TELEMETRY_OBJ_ADDR:
if (id.destination_id == AUTOPILOT_NODE_ID &&
id.source_id != BROADCAST_NODE_ID &&
(1U << (id.source_id - ESC_NODE_ID_FIRST) & _init.detected_bitmask) &&
frame.dlc == 8)
{
const uint8_t idx = id.source_id - ESC_NODE_ID_FIRST;
const uint8_t num_poles = _telemetry.num_poles > 0 ? _telemetry.num_poles : DEFAULT_NUM_POLES;
update_rpm(idx, uint16_t(uint16_t(frame.data[4] << 8 | frame.data[5]) * 60UL * 2 / num_poles));
TelemetryData t {
.temperature_cdeg = int16_t(frame.data[6] * 100),
.voltage = float(uint16_t(frame.data[0] << 8 | frame.data[1])) * 0.01f,
.current = float(uint16_t(frame.data[2] << 8 | frame.data[3])) * 0.01f,
};
update_telem_data(idx, t,
AP_ESC_Telem_Backend::TelemetryType::CURRENT |
AP_ESC_Telem_Backend::TelemetryType::VOLTAGE |
AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
}
break;
#endif // HAL_WITH_ESC_TELEM
case UPDATE_NODE_ID_OBJ_ADDR:
// reply from setting new node ID
_init.detected_bitmask |= 1U << (id.source_id - ESC_NODE_ID_FIRST);
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "KDECAN: Found ESC id %u", id.source_id);
break;
}
}
void AP_KDECAN_Driver::update(const uint8_t num_poles)
{
if (!hal.util->get_soft_armed() || _init.detected_bitmask == 0) {
return;
}
#if HAL_WITH_ESC_TELEM
_telemetry.num_poles = num_poles;
#endif
uint16_t pwm[KDECAN_MAX_NUM_ESCS] {};
uint8_t index = 0;
for (uint16_t i = 0; i < ARRAY_SIZE(pwm); i++) {
if ((_init.detected_bitmask & (1UL<<index)) == 0) {
continue;
}
if (SRV_Channels::channel_function(i) > SRV_Channel::Aux_servo_function_t::k_none) {
pwm[index++] = SRV_Channels::srv_channel(i)->get_output_pwm();
}
}
{
// queue the PWMs for loop()
WITH_SEMAPHORE(_output.sem);
memcpy(&_output.pwm, &pwm, sizeof(_output.pwm));
_output.is_new = true;
}
#if AP_KDECAN_USE_EVENTS
if (_output.thread_ctx != nullptr) {
// trigger the thread to wake up immediately
chEvtSignal(_output.thread_ctx, 1);
}
#endif
}
void AP_KDECAN_Driver::loop()
{
uint16_t pwm[KDECAN_MAX_NUM_ESCS] {};
#if AP_KDECAN_USE_EVENTS
_output.thread_ctx = chThdGetSelfX();
#endif
uint8_t broadcast_esc_info_boot_spam_count = 3;
uint32_t broadcast_esc_info_next_interval_ms = 100; // spam a few at boot at 5Hz
while (true) {
#if AP_KDECAN_USE_EVENTS
// sleep until we get new data, but also wake up at 400Hz to send the old data again
chEvtWaitAnyTimeout(ALL_EVENTS, chTimeUS2I(2500));
#else
hal.scheduler->delay_microseconds(2500); // 400Hz
#endif
const uint32_t now_ms = AP_HAL::millis();
// This should run at 400Hz
{
WITH_SEMAPHORE(_output.sem);
if (_output.is_new) {
_output.last_new_ms = now_ms;
_output.is_new = false;
memcpy(&pwm, &_output.pwm, sizeof(pwm));
} else if (_output.last_new_ms && now_ms - _output.last_new_ms > 1000) {
// if we haven't gotten any PWM updates for a bit, zero it
// out so we don't just keep sending the same values forever
memset(&pwm, 0, sizeof(pwm));
_output.last_new_ms = 0;
} }
_scaled_output[i] = SRV_Channels::srv_channel(i)->get_output_pwm();
} }
_rc_out_sem.give(); uint8_t index = 0;
_new_output.store(true, std::memory_order_release); uint8_t retry = 0;
} else {
debug_can(AP_CANManager::LOG_DEBUG, "failed to get PWM semaphore on write"); while (index < KDECAN_MAX_NUM_ESCS) {
} if ((_init.detected_bitmask & (1 << index)) == 0) {
// we're not sending this index so skip it
index++;
} else if (send_packet_uint16(SET_PWM_OBJ_ADDR, (index + ESC_NODE_ID_FIRST), 1, pwm[index]) || retry++ >= 10) {
// sent successfully or we've retried too many times, move on to the next
index++;
retry = 0;
} else {
// send failed, likely due to CAN TX buffer full. Delay a tiny bit and try again but only a few times
hal.scheduler->delay_microseconds(10);
}
} // while index
#if HAL_WITH_ESC_TELEM
// broadcast as request-telemetry msg to everyone
if (_init.detected_bitmask != 0 && now_ms - _telemetry.timer_ms >= TELEMETRY_INTERVAL_MS) {
if (send_packet(TELEMETRY_OBJ_ADDR, BROADCAST_NODE_ID, 10)) {
_telemetry.timer_ms = now_ms;
}
}
#endif // HAL_WITH_ESC_TELEM
if ((_init.detected_bitmask == 0 || broadcast_esc_info_boot_spam_count > 0) && (now_ms - _init.detected_bitmask_ms >= broadcast_esc_info_next_interval_ms)) {
// broadcast an "anyone there?" quick at boot but then 1Hz forever until we see at least 1 esc respond
if (broadcast_esc_info_boot_spam_count > 0) {
broadcast_esc_info_boot_spam_count--;
} else {
broadcast_esc_info_next_interval_ms = 1000;
}
if (send_packet(ESC_INFO_OBJ_ADDR, BROADCAST_NODE_ID, 100)) {
_init.detected_bitmask_ms = now_ms;
}
}
} // while true
} }
bool AP_KDECAN::pre_arm_check(char* reason, uint8_t reason_len) bool AP_KDECAN_Driver::send_packet_uint16(const uint8_t address, const uint8_t dest_id, const uint32_t timeout_ms, const uint16_t data)
{ {
if (!_enum_sem.take(1)) { const uint16_t data_be16 = htobe16(data);
snprintf(reason, reason_len ,"enumeration state unknown"); return send_packet(address, dest_id, timeout_ms, (uint8_t*)&data_be16, 2);
return false; }
bool AP_KDECAN_Driver::send_packet(const uint8_t address, const uint8_t dest_id, const uint32_t timeout_ms, const uint8_t *data, const uint8_t data_len)
{
// broadcast telemetry request frame
frame_id_t id = { { .object_address = address,
.destination_id = dest_id,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
AP_HAL::CANFrame frame = AP_HAL::CANFrame((id.value | AP_HAL::CANFrame::FlagEFF), data, data_len, false);
const uint64_t timeout_us = uint64_t(timeout_ms) * 1000UL;
return write_frame(frame, timeout_us);
}
bool AP_KDECAN_Driver::pre_arm_check(char* reason, const uint8_t reason_len)
{
uint16_t configured_servo_motors_count = 0;
for (uint16_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if (SRV_Channel::is_motor(SRV_Channels::channel_function(i))) {
configured_servo_motors_count++;
}
} }
if (_enumeration_state != ENUMERATION_STOPPED) { const uint8_t num_present_escs = __builtin_popcount(_init.detected_bitmask);
snprintf(reason, reason_len, "enumeration running");
_enum_sem.give();
return false;
}
_enum_sem.give(); if (configured_servo_motors_count != num_present_escs) {
snprintf(reason, reason_len, "ESC count error: Srv:%u, Detected:%u", (unsigned)configured_servo_motors_count, (unsigned)num_present_escs);
uint32_t motors_mask = 0;
AP_Motors *motors = AP_Motors::get_singleton();
if (motors) {
motors_mask = motors->get_motor_mask();
}
uint8_t num_expected_motors = __builtin_popcount(motors_mask);
uint8_t num_present_escs = __builtin_popcount(_esc_present_bitmask);
if (num_present_escs < num_expected_motors) {
snprintf(reason, reason_len, "too few ESCs detected (%u of %u)", (int)num_present_escs, (int)num_expected_motors);
return false;
}
if (num_present_escs > num_expected_motors) {
snprintf(reason, reason_len, "too many ESCs detected (%u > %u)", (int)num_present_escs, (int)num_expected_motors);
return false;
}
if (_esc_max_node_id != num_expected_motors) {
snprintf(reason, reason_len, "wrong node IDs (%u!=%u), run enumeration", (int)_esc_max_node_id, (int)num_expected_motors);
return false; return false;
} }
return true; return true;
} }
bool AP_KDECAN::run_enumeration(bool start_stop) // singleton instance
AP_KDECAN *AP_KDECAN::_singleton;
namespace AP {
AP_KDECAN *kdecan()
{ {
if (!_enum_sem.take(1)) { return AP_KDECAN::get_singleton();
debug_can(AP_CANManager::LOG_DEBUG, "failed to get enumeration semaphore on write");
return false;
}
if (start_stop) {
_enumeration_state = ENUMERATION_START;
} else if (_enumeration_state != ENUMERATION_STOPPED) {
_enumeration_state = ENUMERATION_STOP;
}
_enum_sem.give();
return true;
} }
};
#endif // AP_KDECAN_ENABLED
#endif // HAL_NUM_CAN_IFACES

View File

@ -15,78 +15,77 @@
/* /*
* AP_KDECAN.h * AP_KDECAN.h
* *
* Author: Francisco Ferreira * Author: Francisco Ferreira and Tom Pittenger
*/ */
#pragma once #pragma once
#include <AP_CANManager/AP_CANDriver.h> #include <AP_KDECAN/AP_KDECAN_config.h>
#if HAL_MAX_CAN_PROTOCOL_DRIVERS #if AP_KDECAN_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/Semaphores.h>
#include <AP_CANManager/AP_CANSensor.h>
#include <AP_Param/AP_Param.h> #include <AP_Param/AP_Param.h>
#include <AP_ESC_Telem/AP_ESC_Telem_Backend.h> #include <AP_ESC_Telem/AP_ESC_Telem_Backend.h>
#include <atomic> #define AP_KDECAN_USE_EVENTS (defined(CH_CFG_USE_EVENTS) && CH_CFG_USE_EVENTS == TRUE)
#if AP_KDECAN_USE_EVENTS
#include <ch.h>
#endif
#define DEFAULT_NUM_POLES 14
// there are 12 motor functions in SRV_Channel but CAN driver can't keep up
#define KDECAN_MAX_NUM_ESCS 8 #define KDECAN_MAX_NUM_ESCS 8
class AP_KDECAN : public AP_CANDriver, public AP_ESC_Telem_Backend { class AP_KDECAN_Driver : public CANSensor
#if HAL_WITH_ESC_TELEM
, public AP_ESC_Telem_Backend
#endif
{
public: public:
AP_KDECAN();
/* Do not allow copies */ AP_KDECAN_Driver();
CLASS_NO_COPY(AP_KDECAN);
static const struct AP_Param::GroupInfo var_info[];
// Return KDECAN from @driver_index or nullptr if it's not ready or doesn't exist
static AP_KDECAN *get_kdecan(uint8_t driver_index);
void init(uint8_t driver_index, bool enable_filters) override;
bool add_interface(AP_HAL::CANIface* can_iface) override;
// called from SRV_Channels // called from SRV_Channels
void update(); void update(const uint8_t num_poles);
// check that arming can happen // check that arming can happen
bool pre_arm_check(char* reason, uint8_t reason_len); bool pre_arm_check(char* reason, const uint8_t reason_len);
// caller checks that vehicle isn't armed
// start_stop: true to start, false to stop
bool run_enumeration(bool start_stop);
private: private:
// handler for incoming frames
void handle_frame(AP_HAL::CANFrame &frame) override;
bool send_packet_uint16(const uint8_t address, const uint8_t dest_id, const uint32_t timeout_ms, const uint16_t data);
bool send_packet(const uint8_t address, const uint8_t dest_id, const uint32_t timeout_ms, const uint8_t *data = nullptr, const uint8_t data_len = 0);
void loop(); void loop();
bool _initialized; struct {
char _thread_name[11]; uint16_t detected_bitmask;
uint8_t _driver_index; uint32_t detected_bitmask_ms;
AP_HAL::CANIface* _can_iface; } _init;
HAL_EventHandle _event_handle;
AP_Int8 _num_poles; struct {
HAL_Semaphore sem;
bool is_new;
uint32_t last_new_ms;
uint16_t pwm[KDECAN_MAX_NUM_ESCS];
#if AP_KDECAN_USE_EVENTS
thread_t *thread_ctx;
#endif
uint16_t max_node_id;
} _output;
// ESC detected information #if HAL_WITH_ESC_TELEM
uint32_t _esc_present_bitmask; struct {
uint8_t _esc_max_node_id; uint8_t num_poles;
uint32_t timer_ms;
// enumeration } _telemetry;
HAL_Semaphore _enum_sem; #endif
enum enumeration_state_t : uint8_t {
ENUMERATION_STOPPED,
ENUMERATION_START,
ENUMERATION_STOP,
ENUMERATION_RUNNING
} _enumeration_state = ENUMERATION_STOPPED;
// PWM output
HAL_Semaphore _rc_out_sem;
std::atomic<bool> _new_output;
uint16_t _scaled_output[KDECAN_MAX_NUM_ESCS];
union frame_id_t { union frame_id_t {
struct PACKED { struct PACKED {
@ -116,11 +115,39 @@ private:
static const uint8_t ENUM_OBJ_ADDR = 10; static const uint8_t ENUM_OBJ_ADDR = 10;
static const uint8_t TELEMETRY_OBJ_ADDR = 11; static const uint8_t TELEMETRY_OBJ_ADDR = 11;
static const uint16_t SET_PWM_MIN_INTERVAL_US = 2500;
static const uint32_t TELEMETRY_INTERVAL_US = 100000;
static const uint32_t SET_PWM_TIMEOUT_US = 2000; static const uint32_t PWM_MIN_INTERVAL_MS = 3;
static const uint16_t TELEMETRY_TIMEOUT_US = 500; static const uint32_t PWM_IS_NEW_TIMEOUT_MS = 1000;
static const uint32_t TELEMETRY_INTERVAL_MS = 100;
static const uint16_t ENUMERATION_TIMEOUT_MS = 30000; static const uint16_t ENUMERATION_TIMEOUT_MS = 30000;
}; };
#endif //HAL_NUM_CAN_IFACES
class AP_KDECAN {
public:
AP_KDECAN();
/* Do not allow copies */
CLASS_NO_COPY(AP_KDECAN);
static const struct AP_Param::GroupInfo var_info[];
void init();
void update();
static AP_KDECAN *get_singleton() { return _singleton; }
// check that arming can happen
bool pre_arm_check(char* reason, const uint8_t reason_len) { return (_driver == nullptr) ? true : _driver->pre_arm_check(reason, reason_len); }
private:
static AP_KDECAN *_singleton;
AP_Int8 _num_poles;
AP_KDECAN_Driver *_driver;
};
namespace AP {
AP_KDECAN *kdecan();
};
#endif // AP_KDECAN_ENABLED

View File

@ -0,0 +1,9 @@
#pragma once
#include <AP_HAL/AP_HAL_Boards.h>
#ifndef AP_KDECAN_ENABLED
#define AP_KDECAN_ENABLED (HAL_MAX_CAN_PROTOCOL_DRIVERS && BOARD_FLASH_SIZE > 1024)
#endif