AP_MotorsMatrix: modified stability patch to sacrifice yaw first if necessary to ensure stability.

Resolves climb-on-yaw problem.
This commit is contained in:
rmackay9 2012-10-09 15:48:15 +09:00
parent b876733c0d
commit c320938ff2
2 changed files with 104 additions and 33 deletions

View File

@ -103,10 +103,11 @@ void AP_MotorsMatrix::output_armed()
int8_t i;
int16_t out_min = _rc_throttle->radio_min;
int16_t out_max = _rc_throttle->radio_max;
int16_t max_motor = 1000;
int16_t min_motor = 2000;
//int16_t yaw_contribution = 0;
int16_t rc_yaw_constrained_pwm;
int16_t rc_yaw_excess;
int16_t upper_margin, lower_margin;
int16_t motor_adjustment = 0;
int16_t yaw_to_execute = 0;
// Throttle is 0 to 1000 only
_rc_throttle->servo_out = constrain(_rc_throttle->servo_out, 0, _max_throttle);
@ -120,42 +121,110 @@ void AP_MotorsMatrix::output_armed()
_rc_throttle->calc_pwm();
_rc_yaw->calc_pwm();
// mix roll, pitch, yaw, throttle into output for each motor
// initialise rc_yaw_contrained_pwm that we will certainly output and rc_yaw_excess that we will do on best-efforts basis.
// Note: these calculations and many others below depend upon _yaw_factors always being 0, -1 or 1.
if( _rc_yaw->pwm_out < -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
rc_yaw_constrained_pwm = -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
rc_yaw_excess = _rc_yaw->pwm_out+AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
}else if( _rc_yaw->pwm_out > AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
rc_yaw_constrained_pwm = AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
rc_yaw_excess = _rc_yaw->pwm_out-AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
}else{
rc_yaw_constrained_pwm = _rc_yaw->pwm_out;
rc_yaw_excess = 0;
}
// initialise upper and lower margins
upper_margin = lower_margin = out_max - out_min;
// add roll, pitch, throttle and constrained yaw for each motor
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
/*yaw_contribution = _rc_yaw->pwm_out*_yaw_factor[i];
* if (yaw_contribution > 0 ){
* yaw_contribution *= 0.7;
* }else{
* yaw_contribution *= 1.42;
* }*/
motor_out[i] = _rc_throttle->radio_out +
_rc_roll->pwm_out * _roll_factor[i] +
_rc_pitch->pwm_out * _pitch_factor[i] +
_rc_yaw->pwm_out*_yaw_factor[i];
rc_yaw_constrained_pwm * _yaw_factor[i];
// calculate remaining room between fastest running motor and top of pwm range
if( out_max - motor_out[i] < upper_margin) {
upper_margin = out_max - motor_out[i];
}
// calculate remaining room between slowest running motor and bottom of pwm range
if( motor_out[i] - out_min < lower_margin ) {
lower_margin = motor_out[i] - out_min;
}
}
}
// stability patch
// if motors are running too fast and we have enough room below, lower overall throttle
if( upper_margin < 0 || lower_margin < 0 ) {
// calculate throttle adjustment that equalizes upper and lower margins. We will never push the throttle beyond this point
motor_adjustment = (upper_margin - lower_margin) / 2; // i.e. if overflowed by 20 on top, 30 on bottom, upper_margin = -20, lower_margin = -30. will adjust motors -5.
// if we have overflowed on the top, reduce but no more than to the mid point
if( upper_margin < 0 ) {
motor_adjustment = max(upper_margin, motor_adjustment);
}
// if we have underflowed on the bottom, increase throttle but no more than to the mid point
if( lower_margin < 0 ) {
motor_adjustment = min(-lower_margin, motor_adjustment);
}
}
// move throttle up or down to to pull within tolerance
if( motor_adjustment != 0 ) {
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] && motor_out[i] > max_motor ) {
max_motor = motor_out[i];
if( motor_enabled[i] ) {
motor_out[i] += motor_adjustment;
}
}
if ( max_motor > out_max ){
}
// if we didn't give all the yaw requested, calculate how much additional yaw we can add
if( rc_yaw_excess != 0 ) {
// try for everything
yaw_to_execute = rc_yaw_excess;
// loop through motors and reduce as necessary
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
motor_out[i] -= (max_motor - out_max);
if( motor_enabled[i] && _yaw_factor[i] != 0 ) {
// calculate upper and lower margins for this motor
upper_margin = max(0,out_max - motor_out[i]);
lower_margin = max(0,motor_out[i] - out_min);
// motor is increasing, check upper limit
if( rc_yaw_excess > 0 && _yaw_factor[i] > 0 ) {
yaw_to_execute = min(yaw_to_execute, upper_margin);
}
// motor is decreasing, check lower limit
if( rc_yaw_excess > 0 && _yaw_factor[i] < 0 ) {
yaw_to_execute = min(yaw_to_execute, lower_margin);
}
// motor is decreasing, check lower limit
if( rc_yaw_excess < 0 && _yaw_factor[i] > 0 ) {
yaw_to_execute = max(yaw_to_execute, -lower_margin);
}
// motor is increasing, check upper limit
if( rc_yaw_excess < 0 && _yaw_factor[i] < 0 ) {
yaw_to_execute = max(yaw_to_execute, -upper_margin);
}
}
}
// check yaw_to_execute is reasonable
if( yaw_to_execute != 0 && ((yaw_to_execute>0 && rc_yaw_excess>0) || (yaw_to_execute<0 && rc_yaw_excess<0)) ) {
// add the additional yaw
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] && motor_out[i] < min_motor ) {
min_motor = motor_out[i];
if( motor_enabled[i] ) {
motor_out[i] += _yaw_factor[i] * yaw_to_execute;
}
}
if ( min_motor < out_min ){
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
motor_out[i] -= (min_motor - out_min);
}
}
@ -168,10 +237,10 @@ void AP_MotorsMatrix::output_armed()
}
}
// ensure motors are not below the minimum
// clip motor output if required (shouldn't be)
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
motor_out[i] = max(motor_out[i], out_min);
motor_out[i] = constrain(motor_out[i], out_min, out_max);
}
}

View File

@ -19,6 +19,8 @@
#define AP_MOTORS_MATRIX_MOTOR_CW -1
#define AP_MOTORS_MATRIX_MOTOR_CCW 1
#define AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM 100
/// @class AP_MotorsMatrix
class AP_MotorsMatrix : public AP_Motors {
public: