mirror of https://github.com/ArduPilot/ardupilot
AP_MotorsMatrix: modified stability patch to sacrifice yaw first if necessary to ensure stability.
Resolves climb-on-yaw problem.
This commit is contained in:
parent
b876733c0d
commit
c320938ff2
|
@ -103,10 +103,11 @@ void AP_MotorsMatrix::output_armed()
|
|||
int8_t i;
|
||||
int16_t out_min = _rc_throttle->radio_min;
|
||||
int16_t out_max = _rc_throttle->radio_max;
|
||||
int16_t max_motor = 1000;
|
||||
int16_t min_motor = 2000;
|
||||
|
||||
//int16_t yaw_contribution = 0;
|
||||
int16_t rc_yaw_constrained_pwm;
|
||||
int16_t rc_yaw_excess;
|
||||
int16_t upper_margin, lower_margin;
|
||||
int16_t motor_adjustment = 0;
|
||||
int16_t yaw_to_execute = 0;
|
||||
|
||||
// Throttle is 0 to 1000 only
|
||||
_rc_throttle->servo_out = constrain(_rc_throttle->servo_out, 0, _max_throttle);
|
||||
|
@ -120,44 +121,112 @@ void AP_MotorsMatrix::output_armed()
|
|||
_rc_throttle->calc_pwm();
|
||||
_rc_yaw->calc_pwm();
|
||||
|
||||
// mix roll, pitch, yaw, throttle into output for each motor
|
||||
// initialise rc_yaw_contrained_pwm that we will certainly output and rc_yaw_excess that we will do on best-efforts basis.
|
||||
// Note: these calculations and many others below depend upon _yaw_factors always being 0, -1 or 1.
|
||||
if( _rc_yaw->pwm_out < -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
|
||||
rc_yaw_constrained_pwm = -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
rc_yaw_excess = _rc_yaw->pwm_out+AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
}else if( _rc_yaw->pwm_out > AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
|
||||
rc_yaw_constrained_pwm = AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
rc_yaw_excess = _rc_yaw->pwm_out-AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
}else{
|
||||
rc_yaw_constrained_pwm = _rc_yaw->pwm_out;
|
||||
rc_yaw_excess = 0;
|
||||
}
|
||||
|
||||
// initialise upper and lower margins
|
||||
upper_margin = lower_margin = out_max - out_min;
|
||||
|
||||
// add roll, pitch, throttle and constrained yaw for each motor
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
/*yaw_contribution = _rc_yaw->pwm_out*_yaw_factor[i];
|
||||
* if (yaw_contribution > 0 ){
|
||||
* yaw_contribution *= 0.7;
|
||||
* }else{
|
||||
* yaw_contribution *= 1.42;
|
||||
* }*/
|
||||
motor_out[i] = _rc_throttle->radio_out +
|
||||
_rc_roll->pwm_out * _roll_factor[i] +
|
||||
_rc_pitch->pwm_out * _pitch_factor[i] +
|
||||
_rc_yaw->pwm_out*_yaw_factor[i];
|
||||
rc_yaw_constrained_pwm * _yaw_factor[i];
|
||||
|
||||
// calculate remaining room between fastest running motor and top of pwm range
|
||||
if( out_max - motor_out[i] < upper_margin) {
|
||||
upper_margin = out_max - motor_out[i];
|
||||
}
|
||||
// calculate remaining room between slowest running motor and bottom of pwm range
|
||||
if( motor_out[i] - out_min < lower_margin ) {
|
||||
lower_margin = motor_out[i] - out_min;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// stability patch
|
||||
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] && motor_out[i] > max_motor ) {
|
||||
max_motor = motor_out[i];
|
||||
// if motors are running too fast and we have enough room below, lower overall throttle
|
||||
if( upper_margin < 0 || lower_margin < 0 ) {
|
||||
|
||||
// calculate throttle adjustment that equalizes upper and lower margins. We will never push the throttle beyond this point
|
||||
motor_adjustment = (upper_margin - lower_margin) / 2; // i.e. if overflowed by 20 on top, 30 on bottom, upper_margin = -20, lower_margin = -30. will adjust motors -5.
|
||||
|
||||
// if we have overflowed on the top, reduce but no more than to the mid point
|
||||
if( upper_margin < 0 ) {
|
||||
motor_adjustment = max(upper_margin, motor_adjustment);
|
||||
}
|
||||
|
||||
// if we have underflowed on the bottom, increase throttle but no more than to the mid point
|
||||
if( lower_margin < 0 ) {
|
||||
motor_adjustment = min(-lower_margin, motor_adjustment);
|
||||
}
|
||||
}
|
||||
if ( max_motor > out_max ){
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
motor_out[i] -= (max_motor - out_max);
|
||||
}
|
||||
}
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] && motor_out[i] < min_motor ) {
|
||||
min_motor = motor_out[i];
|
||||
|
||||
// move throttle up or down to to pull within tolerance
|
||||
if( motor_adjustment != 0 ) {
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] += motor_adjustment;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// if we didn't give all the yaw requested, calculate how much additional yaw we can add
|
||||
if( rc_yaw_excess != 0 ) {
|
||||
|
||||
// try for everything
|
||||
yaw_to_execute = rc_yaw_excess;
|
||||
|
||||
// loop through motors and reduce as necessary
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] && _yaw_factor[i] != 0 ) {
|
||||
|
||||
// calculate upper and lower margins for this motor
|
||||
upper_margin = max(0,out_max - motor_out[i]);
|
||||
lower_margin = max(0,motor_out[i] - out_min);
|
||||
|
||||
// motor is increasing, check upper limit
|
||||
if( rc_yaw_excess > 0 && _yaw_factor[i] > 0 ) {
|
||||
yaw_to_execute = min(yaw_to_execute, upper_margin);
|
||||
}
|
||||
|
||||
// motor is decreasing, check lower limit
|
||||
if( rc_yaw_excess > 0 && _yaw_factor[i] < 0 ) {
|
||||
yaw_to_execute = min(yaw_to_execute, lower_margin);
|
||||
}
|
||||
|
||||
// motor is decreasing, check lower limit
|
||||
if( rc_yaw_excess < 0 && _yaw_factor[i] > 0 ) {
|
||||
yaw_to_execute = max(yaw_to_execute, -lower_margin);
|
||||
}
|
||||
|
||||
// motor is increasing, check upper limit
|
||||
if( rc_yaw_excess < 0 && _yaw_factor[i] < 0 ) {
|
||||
yaw_to_execute = max(yaw_to_execute, -upper_margin);
|
||||
}
|
||||
}
|
||||
}
|
||||
// check yaw_to_execute is reasonable
|
||||
if( yaw_to_execute != 0 && ((yaw_to_execute>0 && rc_yaw_excess>0) || (yaw_to_execute<0 && rc_yaw_excess<0)) ) {
|
||||
// add the additional yaw
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] += _yaw_factor[i] * yaw_to_execute;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if ( min_motor < out_min ){
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
motor_out[i] -= (min_motor - out_min);
|
||||
}
|
||||
}
|
||||
|
||||
// adjust for throttle curve
|
||||
if( _throttle_curve_enabled ) {
|
||||
|
@ -168,10 +237,10 @@ void AP_MotorsMatrix::output_armed()
|
|||
}
|
||||
}
|
||||
|
||||
// ensure motors are not below the minimum
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
// clip motor output if required (shouldn't be)
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] = max(motor_out[i], out_min);
|
||||
motor_out[i] = constrain(motor_out[i], out_min, out_max);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -19,6 +19,8 @@
|
|||
#define AP_MOTORS_MATRIX_MOTOR_CW -1
|
||||
#define AP_MOTORS_MATRIX_MOTOR_CCW 1
|
||||
|
||||
#define AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM 100
|
||||
|
||||
/// @class AP_MotorsMatrix
|
||||
class AP_MotorsMatrix : public AP_Motors {
|
||||
public:
|
||||
|
|
Loading…
Reference in New Issue