AC_PrecLand: precision landing lib for IR-Lock and companion computer

This commit is contained in:
Randy Mackay 2015-02-16 13:37:13 +09:00
parent 7706102d1e
commit c06593f987
7 changed files with 455 additions and 0 deletions

View File

@ -0,0 +1,157 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include <AC_PrecLand.h>
#include <AC_PrecLand_Backend.h>
#include <AC_PrecLand_Companion.h>
#include <AC_PrecLand_IRLock.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_PrecLand::var_info[] PROGMEM = {
// @DisplayName: Precision Land enabled/disabled and behaviour
// @Description: Precision Land enabled/disabled and behaviour
// @Values: 0:Disabled, 1:Enabled Always Land, 2:Enabled Strict
// @User: Advanced
AP_GROUPINFO("ENABLED", 0, AC_PrecLand, _enabled, 0),
// @Param: TYPE
// @DisplayName: Precision Land Type
// @Description: Precision Land Type
// @Values: 0:None, 1:CompanionComputer, 2:IRLock
// @User: Advanced
AP_GROUPINFO("TYPE", 1, AC_PrecLand, _type, 0),
// @Param: SPEED
// @DisplayName: Precision Land horizontal speed maximum in cm/s
// @Description: Precision Land horizontal speed maximum in cm/s
// @Range: 0 500
// @User: Advanced
AP_GROUPINFO("SPEED", 2, AC_PrecLand, _speed_xy, AC_PRECLAND_SPEED_XY_DEFAULT),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
AC_PrecLand::AC_PrecLand(const AP_AHRS& ahrs, const AP_InertialNav& inav,
AC_PI_2D& pi_precland_xy, float dt) :
_ahrs(ahrs),
_inav(inav),
_pi_precland_xy(pi_precland_xy),
_dt(dt),
_have_estimate(false),
_backend(NULL)
{
// set parameters to defaults
AP_Param::setup_object_defaults(this, var_info);
// other initialisation
_backend_state.healthy = false;
}
// init - perform any required initialisation of backends
void AC_PrecLand::init()
{
// exit immediately if init has already been run
if (_backend != NULL) {
return;
}
// default health to false
_backend = NULL;
_backend_state.healthy = false;
// instantiate backend based on type parameter
switch ((enum PrecLandType)(_type.get())) {
// no type defined
case PRECLAND_TYPE_NONE:
default:
return;
// companion computer
case PRECLAND_TYPE_COMPANION:
_backend = new AC_PrecLand_Companion(*this, _backend_state);
break;
// IR Lock
case PRECLAND_TYPE_IRLOCK:
_backend = new AC_PrecLand_IRLock(*this, _backend_state);
break;
}
// init backend
if (_backend != NULL) {
_backend->init();
}
}
// update - give chance to driver to get updates from sensor
void AC_PrecLand::update(float alt_above_terrain_cm)
{
// run backend update
if (_backend != NULL) {
// read from sensor
_backend->update();
// calculate angles to target and position estimate
calc_angles_and_pos(alt_above_terrain_cm);
}
}
// get_target_shift - returns 3D vector of earth-frame position adjustments to target
Vector3f AC_PrecLand::get_target_shift(const Vector3f &orig_target)
{
Vector3f shift; // default shift initialised to zero
// do not shift target if not enabled or no position estimate
if (_backend == NULL || !_have_estimate) {
return shift;
}
// shift is target_offset - (original target - current position)
Vector3f curr_offset_from_target = orig_target - _inav.get_position();
shift = _target_pos_offset - curr_offset_from_target;
shift.z = 0.0f;
// record we have consumed this reading (perhaps there is a cleaner way to do this using timestamps)
_have_estimate = false;
// return adjusted target
return shift;
}
// calc_angles_and_pos - converts sensor's body-frame angles to earth-frame angles and position estimate
// body-frame angles stored in _bf_angle_to_target
// earth-frame angles stored in _ef_angle_to_target
// position estimate is stored in _target_pos
void AC_PrecLand::calc_angles_and_pos(float alt_above_terrain_cm)
{
// exit immediately if not enabled
if (_backend == NULL) {
_have_estimate = false;
}
// get body-frame angles to target from backend
if (!_backend->get_angle_to_target(_bf_angle_to_target.x, _bf_angle_to_target.y)) {
_have_estimate = false;
}
// subtract vehicle lean angles
float x_rad = _bf_angle_to_target.x - _ahrs.roll;
float y_rad = -_bf_angle_to_target.y + _ahrs.pitch;
// rotate to earth-frame angles
_ef_angle_to_target.x = y_rad*_ahrs.cos_yaw() - x_rad*_ahrs.sin_yaw();
_ef_angle_to_target.y = y_rad*_ahrs.sin_yaw() + x_rad*_ahrs.cos_yaw();
// get current altitude (constrained to no lower than 50cm)
float alt = max(alt_above_terrain_cm, 50.0f);
// convert earth-frame angles to earth-frame position offset
_target_pos_offset.x = alt*tanf(_ef_angle_to_target.x);
_target_pos_offset.y = alt*tanf(_ef_angle_to_target.y);
_target_pos_offset.z = 0; // not used
_have_estimate = true;
}

View File

@ -0,0 +1,107 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AC_PRECLAND_H__
#define __AC_PRECLAND_H__
#include <AP_Common.h>
#include <AP_Math.h>
#include <AC_PI_2D.h> // PID library
#include <AP_InertialNav.h> // Inertial Navigation library
// definitions
#define AC_PRECLAND_SPEED_XY_DEFAULT 100.0f // maximum horizontal speed
#define PRECLAND_P 2.0f // velocity controller P gain default
#define PRECLAND_I 1.0f // velocity controller I gain default
#define PRECLAND_IMAX 500.0f // velocity controller IMAX default
#define PRECLAND_UPDATE_TIME 0.02f // precland runs at 50hz
// declare backend classes
class AC_PrecLand_Backend;
class AC_PrecLand_Companion;
class AC_PrecLand_IRLock;
class AC_PrecLand
{
// declare backends as friends
friend class AC_PrecLand_Backend;
friend class AC_PrecLand_Companion;
friend class AC_PrecLand_IRLock;
public:
// precision landing behaviours (held in PRECLAND_ENABLED parameter)
enum PrecLandBehaviour {
PRECLAND_BEHAVIOUR_DISABLED,
PRECLAND_BEHAVIOR_ALWAYSLAND,
PRECLAND_BEHAVIOR_CAUTIOUS
};
// types of precision landing (used for PRECLAND_TYPE parameter)
enum PrecLandType {
PRECLAND_TYPE_NONE = 0,
PRECLAND_TYPE_COMPANION,
PRECLAND_TYPE_IRLOCK
};
// Constructor
AC_PrecLand(const AP_AHRS& ahrs, const AP_InertialNav& inav, AC_PI_2D& pi_precland_xy, float dt);
// init - perform any required initialisation of landing controllers
void init();
// healthy - returns true if precision landing is healthy
bool healthy() { return _backend_state.healthy; }
// update - give chance to driver to get updates from sensor
void update(float alt_above_terrain_cm);
// get_target_shift - returns 3D vector of earth-frame position adjustments to target
Vector3f get_target_shift(const Vector3f& orig_target);
// accessors for logging
bool enabled() const { return _enabled; }
const Vector2f& last_bf_angle_to_target() const { return _bf_angle_to_target; }
const Vector2f& last_ef_angle_to_target() const { return _ef_angle_to_target; }
const Vector3f& last_target_pos_offset() const { return _target_pos_offset; }
// parameter var table
static const struct AP_Param::GroupInfo var_info[];
private:
// calc_angles_and_pos - converts sensor's body-frame angles to earth-frame angles and position estimate
// body-frame angles stored in _bf_angle_to_target
// earth-frame angles stored in _ef_angle_to_target
// position estimate is stored in _target_pos
void calc_angles_and_pos(float alt_above_terrain_cm);
// get_behaviour - returns enabled parameter as an behaviour
enum PrecLandBehaviour get_behaviour() const { return (enum PrecLandBehaviour)(_enabled.get()); }
// references to inertial nav and ahrs libraries
const AP_AHRS& _ahrs;
const AP_InertialNav& _inav;
AC_PI_2D& _pi_precland_xy; // horizontal velocity PI controller
// parameters
AP_Int8 _enabled; // enabled/disabled and behaviour
AP_Int8 _type; // precision landing controller type
AP_Float _speed_xy; // maximum horizontal speed in cm/s
// internal variables
float _dt; // time difference (in seconds) between calls from the main program
// output from sensor (stored for logging)
Vector2f _bf_angle_to_target;// last body-frame angle to target
Vector2f _ef_angle_to_target;// last earth-frame angle to target
// output from controller
bool _have_estimate; // true if we have a recent estimated position offset
Vector3f _target_pos_offset; // estimate target position offset from vehicle in earth-frame
// backend state
struct precland_state {
bool healthy;
} _backend_state;
AC_PrecLand_Backend *_backend; // pointers to backend precision landing driver
};
#endif // __AC_PRECLAND_H__

View File

@ -0,0 +1,41 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AC_PRECLAND_BACKEND_H__
#define __AC_PRECLAND_BACKEND_H__
#include <AP_Common.h>
#include <AP_Math.h>
#include <AC_PID.h> // PID library
#include <AP_InertialNav.h> // Inertial Navigation library
#include <AC_PrecLand.h> // Precision Landing frontend
class AC_PrecLand_Backend
{
public:
// Constructor
AC_PrecLand_Backend(const AC_PrecLand& frontend, AC_PrecLand::precland_state& state) :
_frontend(frontend),
_state(state) {}
// destructor
virtual ~AC_PrecLand_Backend() {}
// init - perform any required initialisation of backend controller
virtual void init() = 0;
// update - give chance to driver to get updates from sensor
// returns true if new data available
virtual bool update() = 0;
// get_angle_to_target - returns body frame angles (in radians) to target
// returns true if angles are available, false if not (i.e. no target)
// x_angle_rad : body-frame roll direction, positive = target is to right (looking down)
// y_angle_rad : body-frame pitch direction, postiive = target is forward (looking down)
virtual bool get_angle_to_target(float &x_angle_rad, float &y_angle_rad) const = 0;
protected:
const AC_PrecLand& _frontend; // reference to precision landing front end
AC_PrecLand::precland_state &_state; // reference to this instances state
};
#endif // __AC_PRECLAND_BACKEND_H__

View File

@ -0,0 +1,35 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include <AC_PrecLand_Companion.h>
extern const AP_HAL::HAL& hal;
// Constructor
AC_PrecLand_Companion::AC_PrecLand_Companion(const AC_PrecLand& frontend, AC_PrecLand::precland_state& state)
: AC_PrecLand_Backend(frontend, state)
{
}
// init - perform initialisation of this backend
void AC_PrecLand_Companion::init()
{
// set healthy
_state.healthy = true;
}
// update - give chance to driver to get updates from sensor
// returns true if new data available
bool AC_PrecLand_Companion::update()
{
// To-Do: read target position from companion computer via MAVLink
return false;
}
// get_angle_to_target - returns body frame angles (in radians) to target
// returns true if angles are available, false if not (i.e. no target)
// x_angle_rad : body-frame roll direction, positive = target is to right (looking down)
// y_angle_rad : body-frame pitch direction, postiive = target is forward (looking down)
bool AC_PrecLand_Companion::get_angle_to_target(float &x_angle_rad, float &y_angle_rad) const
{
return false;
}

View File

@ -0,0 +1,39 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AC_PRECLAND_COMPANION_H__
#define __AC_PRECLAND_COMPANION_H__
#include <AP_Common.h>
#include <AP_Math.h>
#include <AC_PrecLand_Backend.h> // Precision Landing backend
/*
* AC_PrecLand_Companion - implements precision landing using target vectors provided
* by a companion computer (i.e. Odroid) communicating via MAVLink
*/
class AC_PrecLand_Companion : public AC_PrecLand_Backend
{
public:
// Constructor
AC_PrecLand_Companion(const AC_PrecLand& frontend, AC_PrecLand::precland_state& state);
// init - perform any required initialisation of backend controller
void init();
// update - give chance to driver to get updates from sensor
// returns true if new data available
bool update();
// get_angle_to_target - returns body frame angles (in radians) to target
// returns true if angles are available, false if not (i.e. no target)
// x_angle_rad : body-frame roll direction, positive = target is to right (looking down)
// y_angle_rad : body-frame pitch direction, postiive = target is forward (looking down)
bool get_angle_to_target(float &x_angle_rad, float &y_angle_rad) const;
private:
mavlink_channel_t _chan; // mavlink channel used to communicate with companion computer
};
#endif // __AC_PRECLAND_COMPANION_H__

View File

@ -0,0 +1,37 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include <AC_PrecLand_IRLock.h>
extern const AP_HAL::HAL& hal;
// Constructor
AC_PrecLand_IRLock::AC_PrecLand_IRLock(const AC_PrecLand& frontend, AC_PrecLand::precland_state& state)
: AC_PrecLand_Backend(frontend, state),
irlock()
{
}
// init - perform initialisation of this backend
void AC_PrecLand_IRLock::init()
{
irlock.init();
// set healthy
_state.healthy = irlock.healthy();
}
// update - give chance to driver to get updates from sensor
bool AC_PrecLand_IRLock::update()
{
// get new sensor data
return (irlock.update());
}
// get_angle_to_target - returns body frame angles (in radians) to target
// returns true if angles are available, false if not (i.e. no target)
// x_angle_rad : body-frame roll direction, positive = target is to right (looking down)
// y_angle_rad : body-frame pitch direction, postiive = target is forward (looking down)
bool AC_PrecLand_IRLock::get_angle_to_target(float &x_angle_rad, float &y_angle_rad) const
{
return irlock.get_angle_to_target(x_angle_rad, y_angle_rad);
}

View File

@ -0,0 +1,39 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AC_PRECLAND_IRLOCK_H__
#define __AC_PRECLAND_IRLOCK_H__
#include <AP_Common.h>
#include <AP_Math.h>
#include <AC_PrecLand_Backend.h> // Precision Landing backend
#include <AP_IRLock.h>
/*
* AC_PrecLand_IRLock - implements precision landing using target vectors provided
* by a companion computer (i.e. Odroid) communicating via MAVLink
*/
class AC_PrecLand_IRLock : public AC_PrecLand_Backend
{
public:
// Constructor
AC_PrecLand_IRLock(const AC_PrecLand& frontend, AC_PrecLand::precland_state& state);
// init - perform any required initialisation of backend controller
void init();
// update - give chance to driver to get updates from sensor
// returns true if new data available
bool update();
// get_angle_to_target - returns body frame angles (in radians) to target
// returns true if angles are available, false if not (i.e. no target)
// x_angle_rad : body-frame roll direction, positive = target is to right (looking down)
// y_angle_rad : body-frame pitch direction, postiive = target is forward (looking down)
bool get_angle_to_target(float &x_angle_rad, float &y_angle_rad) const;
private:
AP_IRLock_PX4 irlock;
};
#endif // __AC_PRECLAND_IRLOCK_H__