AP_FlashStorage: added erase_ok callback

this allows for simpler operation when application wants to allow
erase while disarmed.
This commit is contained in:
Andrew Tridgell 2016-11-19 10:22:58 +11:00
parent 0e00c3cf9b
commit bfd137e36a
3 changed files with 81 additions and 32 deletions

View File

@ -32,12 +32,14 @@ AP_FlashStorage::AP_FlashStorage(uint8_t *_mem_buffer,
uint32_t _flash_sector_size, uint32_t _flash_sector_size,
FlashWrite _flash_write, FlashWrite _flash_write,
FlashRead _flash_read, FlashRead _flash_read,
FlashErase _flash_erase) : FlashErase _flash_erase,
FlashEraseOK _flash_erase_ok) :
mem_buffer(_mem_buffer), mem_buffer(_mem_buffer),
flash_sector_size(_flash_sector_size), flash_sector_size(_flash_sector_size),
flash_write(_flash_write), flash_write(_flash_write),
flash_read(_flash_read), flash_read(_flash_read),
flash_erase(_flash_erase) {} flash_erase(_flash_erase),
flash_erase_ok(_flash_erase_ok) {}
// initialise storage // initialise storage
bool AP_FlashStorage::init(void) bool AP_FlashStorage::init(void)
@ -59,8 +61,7 @@ bool AP_FlashStorage::init(void)
enum SectorState state = (enum SectorState)header[i].state; enum SectorState state = (enum SectorState)header[i].state;
if (state != SECTOR_STATE_AVAILABLE && if (state != SECTOR_STATE_AVAILABLE &&
state != SECTOR_STATE_IN_USE && state != SECTOR_STATE_IN_USE &&
state != SECTOR_STATE_FULL && state != SECTOR_STATE_FULL) {
state != SECTOR_STATE_FREE) {
bad_header = true; bad_header = true;
} }
@ -115,10 +116,9 @@ bool AP_FlashStorage::init(void)
} }
} }
// erase any sectors marked full or free // erase any sectors marked full
for (uint8_t i=0; i<2; i++) { for (uint8_t i=0; i<2; i++) {
if (states[i] == SECTOR_STATE_FULL || if (states[i] == SECTOR_STATE_FULL) {
states[i] == SECTOR_STATE_FREE) {
if (!erase_sector(i)) { if (!erase_sector(i)) {
return false; return false;
} }
@ -131,6 +131,29 @@ bool AP_FlashStorage::init(void)
return true; return true;
} }
// switch full sector - should only be called when safe to have CPU
// offline for considerable periods as an erase will be needed
bool AP_FlashStorage::switch_full_sector(void)
{
debug("running switch_full_sector()\n");
// clear any write error
write_error = false;
reserved_space = 0;
if (!write_all()) {
return false;
}
if (!erase_sector(current_sector ^ 1)) {
return false;
}
return switch_sectors();
}
// write some data to virtual EEPROM // write some data to virtual EEPROM
bool AP_FlashStorage::write(uint16_t offset, uint16_t length) bool AP_FlashStorage::write(uint16_t offset, uint16_t length)
{ {
@ -147,7 +170,12 @@ bool AP_FlashStorage::write(uint16_t offset, uint16_t length)
if (write_offset > flash_sector_size - (sizeof(struct block_header) + max_write + reserved_space)) { if (write_offset > flash_sector_size - (sizeof(struct block_header) + max_write + reserved_space)) {
if (!switch_sectors()) { if (!switch_sectors()) {
return false; if (!flash_erase_ok()) {
return false;
}
if (!switch_full_sector()) {
return false;
}
} }
} }
@ -303,21 +331,14 @@ bool AP_FlashStorage::switch_sectors(void)
return false; return false;
} }
// mark current sector as full
struct sector_header header; struct sector_header header;
header.signature = signature; header.signature = signature;
header.state = SECTOR_STATE_FULL;
if (!flash_write(current_sector, 0, (const uint8_t *)&header, sizeof(header))) {
return false;
}
// switch sectors uint8_t new_sector = current_sector ^ 1;
current_sector ^= 1; debug("switching to sector %u\n", new_sector);
debug("switching to sector %u\n", current_sector);
// check sector is available // check sector is available
if (!flash_read(current_sector, 0, (uint8_t *)&header, sizeof(header))) { if (!flash_read(new_sector, 0, (uint8_t *)&header, sizeof(header))) {
return false; return false;
} }
if (header.signature != signature) { if (header.signature != signature) {
@ -332,10 +353,20 @@ bool AP_FlashStorage::switch_sectors(void)
// mark it in-use // mark it in-use
header.state = SECTOR_STATE_IN_USE; header.state = SECTOR_STATE_IN_USE;
if (!flash_write(new_sector, 0, (const uint8_t *)&header, sizeof(header))) {
return false;
}
// mark current sector as full
header.state = SECTOR_STATE_FULL;
if (!flash_write(current_sector, 0, (const uint8_t *)&header, sizeof(header))) { if (!flash_write(current_sector, 0, (const uint8_t *)&header, sizeof(header))) {
return false; return false;
} }
// switch sectors
current_sector = new_sector;
// we need to reserve some space in next sector to ensure we can successfully do a // we need to reserve some space in next sector to ensure we can successfully do a
// full write out on init() // full write out on init()
reserved_space = reserve_size; reserved_space = reserve_size;

View File

@ -58,16 +58,24 @@ public:
// caller provided function to erase a flash sector. Only called from init() // caller provided function to erase a flash sector. Only called from init()
FUNCTOR_TYPEDEF(FlashErase, bool, uint8_t ); FUNCTOR_TYPEDEF(FlashErase, bool, uint8_t );
// caller provided function to indicate if erasing is allowed
FUNCTOR_TYPEDEF(FlashEraseOK, bool);
// constructor. // constructor.
AP_FlashStorage(uint8_t *mem_buffer, // buffer of storage_size bytes AP_FlashStorage(uint8_t *mem_buffer, // buffer of storage_size bytes
uint32_t flash_sector_size, // size of each flash sector in bytes uint32_t flash_sector_size, // size of each flash sector in bytes
FlashWrite flash_write, // function to write to flash FlashWrite flash_write, // function to write to flash
FlashRead flash_read, // function to read from flash FlashRead flash_read, // function to read from flash
FlashErase flash_erase); // function to erase flash FlashErase flash_erase, // function to erase flash
FlashEraseOK flash_erase_ok); // function to check if erasing allowed
// initialise storage, filling mem_buffer with current contents // initialise storage, filling mem_buffer with current contents
bool init(void); bool init(void);
// switch full sector - should only be called when safe to have CPU
// offline for considerable periods as an erase will be needed
bool switch_full_sector(void);
// write some data to storage from mem_buffer // write some data to storage from mem_buffer
bool write(uint16_t offset, uint16_t length); bool write(uint16_t offset, uint16_t length);
@ -80,6 +88,7 @@ private:
FlashWrite flash_write; FlashWrite flash_write;
FlashRead flash_read; FlashRead flash_read;
FlashErase flash_erase; FlashErase flash_erase;
FlashEraseOK flash_erase_ok;
uint8_t current_sector; uint8_t current_sector;
uint32_t write_offset; uint32_t write_offset;
@ -93,8 +102,7 @@ private:
enum SectorState { enum SectorState {
SECTOR_STATE_AVAILABLE = 0xFF, SECTOR_STATE_AVAILABLE = 0xFF,
SECTOR_STATE_IN_USE = 0xFE, SECTOR_STATE_IN_USE = 0xFE,
SECTOR_STATE_FULL = 0xFC, SECTOR_STATE_FULL = 0xFC
SECTOR_STATE_FREE = 0xF8,
}; };
// header in first word of each sector // header in first word of each sector

View File

@ -27,15 +27,19 @@ private:
bool flash_write(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length); bool flash_write(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length);
bool flash_read(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length); bool flash_read(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length);
bool flash_erase(uint8_t sector); bool flash_erase(uint8_t sector);
bool flash_erase_ok(void);
AP_FlashStorage storage{mem_buffer, AP_FlashStorage storage{mem_buffer,
flash_sector_size, flash_sector_size,
FUNCTOR_BIND_MEMBER(&FlashTest::flash_write, bool, uint8_t, uint32_t, const uint8_t *, uint16_t), FUNCTOR_BIND_MEMBER(&FlashTest::flash_write, bool, uint8_t, uint32_t, const uint8_t *, uint16_t),
FUNCTOR_BIND_MEMBER(&FlashTest::flash_read, bool, uint8_t, uint32_t, uint8_t *, uint16_t), FUNCTOR_BIND_MEMBER(&FlashTest::flash_read, bool, uint8_t, uint32_t, uint8_t *, uint16_t),
FUNCTOR_BIND_MEMBER(&FlashTest::flash_erase, bool, uint8_t)}; FUNCTOR_BIND_MEMBER(&FlashTest::flash_erase, bool, uint8_t),
FUNCTOR_BIND_MEMBER(&FlashTest::flash_erase_ok, bool)};
// write to storage and mem_mirror // write to storage and mem_mirror
void write(uint16_t offset, const uint8_t *data, uint16_t length); void write(uint16_t offset, const uint8_t *data, uint16_t length);
bool erase_ok;
}; };
bool FlashTest::flash_write(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length) bool FlashTest::flash_write(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length)
@ -80,20 +84,19 @@ bool FlashTest::flash_erase(uint8_t sector)
return true; return true;
} }
bool FlashTest::flash_erase_ok(void)
{
return erase_ok;
}
void FlashTest::write(uint16_t offset, const uint8_t *data, uint16_t length) void FlashTest::write(uint16_t offset, const uint8_t *data, uint16_t length)
{ {
memcpy(&mem_mirror[offset], data, length); memcpy(&mem_mirror[offset], data, length);
memcpy(&mem_buffer[offset], data, length); memcpy(&mem_buffer[offset], data, length);
if (!storage.write(offset, length)) { if (!storage.write(offset, length)) {
printf("Failed to write at %u for %u\n", offset, length); if (erase_ok) {
if (!storage.init()) { printf("Failed to write at %u for %u\n", offset, length);
AP_HAL::panic("Failed to re-init");
} }
memcpy(&mem_buffer[offset], data, length);
if (!storage.write(offset, length)) {
AP_HAL::panic("Failed 2nd write at %u for %u", offset, length);
}
printf("re-init OK\n");
} }
} }
@ -111,7 +114,7 @@ void FlashTest::setup(void)
} }
// fill with 10k random writes // fill with 10k random writes
for (uint32_t i=0; i<50000000; i++) { for (uint32_t i=0; i<5000000; i++) {
uint16_t ofs = get_random16() % sizeof(mem_buffer); uint16_t ofs = get_random16() % sizeof(mem_buffer);
uint16_t length = get_random16() & 0x1F; uint16_t length = get_random16() & 0x1F;
length = MIN(length, sizeof(mem_buffer) - ofs); length = MIN(length, sizeof(mem_buffer) - ofs);
@ -119,15 +122,22 @@ void FlashTest::setup(void)
for (uint8_t j=0; j<length; j++) { for (uint8_t j=0; j<length; j++) {
data[j] = get_random16() & 0xFF; data[j] = get_random16() & 0xFF;
} }
erase_ok = (i % 1000 == 0);
write(ofs, data, length); write(ofs, data, length);
if (i % 1000 == 0) { if (erase_ok) {
if (memcmp(mem_buffer, mem_mirror, sizeof(mem_buffer)) != 0) { if (memcmp(mem_buffer, mem_mirror, sizeof(mem_buffer)) != 0) {
AP_HAL::panic("FATAL: data mis-match at i=%u", i); AP_HAL::panic("FATAL: data mis-match at i=%u", i);
} }
} }
} }
// force final write to allow for flush with erase_ok
erase_ok = true;
uint8_t b = 42;
write(37, &b, 1);
if (memcmp(mem_buffer, mem_mirror, sizeof(mem_buffer)) != 0) { if (memcmp(mem_buffer, mem_mirror, sizeof(mem_buffer)) != 0) {
AP_HAL::panic("FATAL: data mis-match before re-init"); AP_HAL::panic("FATAL: data mis-match before re-init");
} }