Added resetting of Loiter location based on stick input. Fly it to a location and let it stick.

Added Octo Support
Fixed Loiter issue regarding Yaw towards loiter location
Added Yaw control alternative for testing
decreased Yaw deadband to +-5°
revved to 2.0.10



git-svn-id: https://arducopter.googlecode.com/svn/trunk@2392 f9c3cf11-9bcb-44bc-f272-b75c42450872
This commit is contained in:
jasonshort 2011-05-24 02:23:26 +00:00
parent 1f222a4a5c
commit bd64dd9770
1 changed files with 169 additions and 0 deletions

View File

@ -0,0 +1,169 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == OCTA_FRAME
void output_motors_armed()
{
int roll_out, pitch_out;
int out_min = g.rc_3.radio_min;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + 90;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
if(g.frame_orientation == X_FRAME){
roll_out = (float)g.rc_1.pwm_out * 0.4;
pitch_out = (float)g.rc_2.pwm_out * 0.4;
//Front side
motor_out[CH_1] = g.rc_3.radio_out + g.rc_2.pwm_out - roll_out; // CW FRONT RIGHT
motor_out[CH_11] = g.rc_3.radio_out + g.rc_2.pwm_out + roll_out; // CCW FRONT LEFT
//Left side
motor_out[CH_10] = g.rc_3.radio_out + g.rc_1.pwm_out + pitch_out; // CW LEFT FRONT
motor_out[CH_8] = g.rc_3.radio_out + g.rc_1.pwm_out - pitch_out; // CCW LEFT BACK
//Right side
motor_out[CH_3] = g.rc_3.radio_out - g.rc_1.pwm_out - pitch_out; // CW RIGHT BACK
motor_out[CH_2] = g.rc_3.radio_out - g.rc_1.pwm_out + pitch_out; // CCW RIGHT FRONT
//Back side
motor_out[CH_7] = g.rc_3.radio_out - g.rc_2.pwm_out + roll_out; // CW BACK LEFT
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out - roll_out; // CCW BACK RIGHT
}else{
roll_out = (float)g.rc_1.pwm_out * 0.71;
pitch_out = (float)g.rc_2.pwm_out * 0.71;
//Front side
motor_out[CH_1] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT
motor_out[CH_2] = g.rc_3.radio_out - roll_out + pitch_out; // CCW FRONT RIGHT
motor_out[CH_11] = g.rc_3.radio_out + roll_out + pitch_out; // CCW FRONT LEFT
//Left side
motor_out[CH_10] = g.rc_3.radio_out + g.rc_1.pwm_out; // CW LEFT
//Right side
motor_out[CH_3] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW RIGHT
//Back side
motor_out[CH_7] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW BACK
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW BACK RIGHT
motor_out[CH_8] = g.rc_3.radio_out + roll_out - pitch_out; // CCW BACK LEFT
}
// Yaw
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_4] += g.rc_4.pwm_out; // CCW
motor_out[CH_11] += g.rc_4.pwm_out; // CCW
motor_out[CH_8] += g.rc_4.pwm_out; // CCW
motor_out[CH_1] -= g.rc_4.pwm_out; // CW
motor_out[CH_7] -= g.rc_4.pwm_out; // CW
motor_out[CH_10] -= g.rc_4.pwm_out; // CW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
// limit output so motors don't stop
motor_out[CH_1] = max(motor_out[CH_1], out_min);
motor_out[CH_2] = max(motor_out[CH_2], out_min);
motor_out[CH_3] = max(motor_out[CH_3], out_min);
motor_out[CH_4] = max(motor_out[CH_4], out_min);
motor_out[CH_7] = max(motor_out[CH_7], out_min);
motor_out[CH_8] = max(motor_out[CH_8], out_min);
motor_out[CH_10] = max(motor_out[CH_10], out_min);
motor_out[CH_11] = max(motor_out[CH_11], out_min);
// Send commands to motors
if(g.rc_3.servo_out > 0){
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
APM_RC.OutputCh(CH_10, motor_out[CH_10]);
APM_RC.OutputCh(CH_11, motor_out[CH_11]);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out6_Out7();
APM_RC.Force_Out2_Out3();
}else{
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
APM_RC.OutputCh(CH_10, g.rc_3.radio_min);
APM_RC.OutputCh(CH_11, g.rc_3.radio_min);
}
}
void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 11; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
APM_RC.OutputCh(CH_10, g.rc_3.radio_min);
APM_RC.OutputCh(CH_11, g.rc_3.radio_min);
}
void output_motor_test()
{
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min + 50);
delay(1000);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min + 50);
delay(1000);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_1, g.rc_3.radio_min + 50);
delay(1000);
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min + 50);
delay(1000);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min + 50);
delay(1000);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
APM_RC.OutputCh(CH_10, g.rc_3.radio_min + 50);
delay(1000);
APM_RC.OutputCh(CH_10, g.rc_3.radio_min);
APM_RC.OutputCh(CH_11, g.rc_3.radio_min + 50);
delay(1000);
APM_RC.OutputCh(CH_11, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min + 50);
delay(1000);
}
#endif