Plane: update sensor status error flags independently of sending a sys_status message

This commit is contained in:
floaledm 2016-10-27 21:09:35 -05:00 committed by Andrew Tridgell
parent 1aab5eec38
commit bae9ce20c1
5 changed files with 221 additions and 207 deletions

View File

@ -357,6 +357,12 @@ void Plane::one_second_loop()
// reset the landing altitude correction
auto_state.land_alt_offset = 0;
}
// update error mask of sensors and subsystems. The mask uses the
// MAV_SYS_STATUS_* values from mavlink. If a bit is set then it
// indicates that the sensor or subsystem is present but not
// functioning correctly
update_sensor_status_flags();
}
void Plane::log_perf_info()

View File

@ -3,9 +3,6 @@
#include "Plane.h"
#include "version.h"
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS | MAV_SYS_STATUS_SENSOR_RC_RECEIVER)
void Plane::send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
@ -124,165 +121,6 @@ void Plane::send_fence_status(mavlink_channel_t chan)
void Plane::send_extended_status1(mavlink_channel_t chan)
{
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (airspeed.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (geofence_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
if (aparm.throttle_min < 0) {
control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
if (plane.DataFlash.logging_present()) { // primary logging only (usually File)
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
}
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence and motor output which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE & ~MAV_SYS_STATUS_LOGGING);
if (airspeed.enabled() && airspeed.use()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (geofence_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
if (plane.DataFlash.logging_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
}
switch (control_mode) {
case MANUAL:
break;
case ACRO:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case QSTABILIZE:
case QHOVER:
case QLAND:
case QLOITER:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case FLY_BY_WIRE_B:
case CRUISE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case TRAINING:
if (!training_manual_roll || !training_manual_pitch) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
}
break;
case AUTO:
case RTL:
case LOITER:
case AVOID_ADSB:
case GUIDED:
case CIRCLE:
case QRTL:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
break;
case INITIALISING:
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
// default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy.
control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE |
MAV_SYS_STATUS_SENSOR_3D_MAG |
MAV_SYS_STATUS_SENSOR_GPS |
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
if (ahrs.initialised() && !ahrs.healthy()) {
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) {
// trying to use EKF without properly calibrated accelerometers
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (barometer.all_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (airspeed.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
#if GEOFENCE_ENABLED
if (geofence_breached()) {
control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
}
#endif
if (plane.DataFlash.logging_failed()) {
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
}
if (millis() - failsafe.last_valid_rc_ms < 200) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
} else {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
int16_t battery_current = -1;
int8_t battery_remaining = -1;
@ -291,44 +129,7 @@ void Plane::send_extended_status1(mavlink_channel_t chan)
battery_current = battery.current_amps() * 100;
}
#if AP_TERRAIN_AVAILABLE
switch (terrain.status()) {
case AP_Terrain::TerrainStatusDisabled:
break;
case AP_Terrain::TerrainStatusUnhealthy:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
break;
case AP_Terrain::TerrainStatusOK:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
break;
}
#endif
#if RANGEFINDER_ENABLED == ENABLED
if (rangefinder.num_sensors() > 0) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
if (g.rangefinder_landing) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
if (rangefinder.has_data()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
}
#endif
if (aparm.throttle_min < 0 && channel_throttle->get_servo_out() < 0) {
control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR;
control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
if (AP_Notify::flags.initialising) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
update_sensor_status_flags();
mavlink_msg_sys_status_send(
chan,
@ -342,12 +143,6 @@ void Plane::send_extended_status1(mavlink_channel_t chan)
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
#if FRSKY_TELEM_ENABLED == ENABLED
// give mask of error flags to Frsky_Telemetry
uint32_t sensors_error_flags = (~control_sensors_health) & control_sensors_enabled & control_sensors_present;
frsky_telemetry.update_sensor_status_flags(sensors_error_flags);
#endif
}
void Plane::send_location(mavlink_channel_t chan)

View File

@ -2,6 +2,9 @@
#include <GCS_MAVLink/GCS.h>
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS | MAV_SYS_STATUS_SENSOR_RC_RECEIVER)
class GCS_MAVLINK_Plane : public GCS_MAVLINK
{

View File

@ -423,6 +423,11 @@ private:
AP_Frsky_Telem frsky_telemetry {ahrs, battery, rangefinder};
#endif
// Variables for extended status MAVLink messages
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// Airspeed Sensors
AP_Airspeed airspeed;
@ -824,6 +829,7 @@ private:
void send_heartbeat(mavlink_channel_t chan);
void send_attitude(mavlink_channel_t chan);
void send_fence_status(mavlink_channel_t chan);
void update_sensor_status_flags(void);
void send_extended_status1(mavlink_channel_t chan);
void send_location(mavlink_channel_t chan);
void send_nav_controller_output(mavlink_channel_t chan);

View File

@ -170,3 +170,207 @@ void Plane::ice_update(void)
{
g2.ice_control.update();
}
// update error mask of sensors and subsystems. The mask
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set
// then it indicates that the sensor or subsystem is present but
// not functioning correctly.
void Plane::update_sensor_status_flags(void)
{
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (airspeed.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (geofence_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
if (aparm.throttle_min < 0) {
control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
if (plane.DataFlash.logging_present()) { // primary logging only (usually File)
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
}
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence and motor output which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE & ~MAV_SYS_STATUS_LOGGING);
if (airspeed.enabled() && airspeed.use()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (geofence_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
if (plane.DataFlash.logging_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
}
switch (control_mode) {
case MANUAL:
break;
case ACRO:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case QSTABILIZE:
case QHOVER:
case QLAND:
case QLOITER:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case FLY_BY_WIRE_B:
case CRUISE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case TRAINING:
if (!training_manual_roll || !training_manual_pitch) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
}
break;
case AUTO:
case RTL:
case LOITER:
case AVOID_ADSB:
case GUIDED:
case CIRCLE:
case QRTL:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
break;
case INITIALISING:
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
// default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy.
control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE |
MAV_SYS_STATUS_SENSOR_3D_MAG |
MAV_SYS_STATUS_SENSOR_GPS |
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
if (ahrs.initialised() && !ahrs.healthy()) {
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) {
// trying to use EKF without properly calibrated accelerometers
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (barometer.all_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (airspeed.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
#if GEOFENCE_ENABLED
if (geofence_breached()) {
control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
}
#endif
if (plane.DataFlash.logging_failed()) {
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
}
if (millis() - failsafe.last_valid_rc_ms < 200) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
} else {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
#if AP_TERRAIN_AVAILABLE
switch (terrain.status()) {
case AP_Terrain::TerrainStatusDisabled:
break;
case AP_Terrain::TerrainStatusUnhealthy:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
break;
case AP_Terrain::TerrainStatusOK:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
break;
}
#endif
#if RANGEFINDER_ENABLED == ENABLED
if (rangefinder.num_sensors() > 0) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
if (g.rangefinder_landing) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
if (rangefinder.has_data()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
}
#endif
if (aparm.throttle_min < 0 && channel_throttle->get_servo_out() < 0) {
control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR;
control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
if (AP_Notify::flags.initialising) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
#if FRSKY_TELEM_ENABLED == ENABLED
// give mask of error flags to Frsky_Telemetry
frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present);
#endif
}