mirror of https://github.com/ArduPilot/ardupilot
AP_HAL_AVR: Scheduler extensions implemented
This commit is contained in:
parent
6671310399
commit
ba7a596ec3
|
@ -4,7 +4,7 @@ using namespace AP_HAL_AVR;
|
|||
|
||||
void HAL_AVR::init(void* opts) const {
|
||||
|
||||
scheduler->init();
|
||||
scheduler->init((void*)&isr_registry);
|
||||
|
||||
/* uart0 is the serial port used for the console, so lets make sure
|
||||
* it is initialized at boot */
|
||||
|
|
|
@ -6,7 +6,6 @@ using namespace AP_HAL_AVR;
|
|||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
|
||||
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
|
||||
|
@ -14,7 +13,25 @@ static volatile uint32_t timer0_overflow_count = 0;
|
|||
static volatile uint32_t timer0_millis = 0;
|
||||
static uint8_t timer0_fract = 0;
|
||||
|
||||
void ArduinoScheduler::init() {
|
||||
/* ArduinoScheduler timer interrupt period is controlled by TCNT2.
|
||||
* 256-62 gives a 1kHz period. */
|
||||
#define RESET_TCNT2_VALUE (256 - 62)
|
||||
|
||||
/* Static ArduinoScheduler variables: */
|
||||
AP_HAL::TimedProc ArduinoScheduler::_failsafe = NULL;
|
||||
volatile bool ArduinoScheduler::_timer_suspended = false;
|
||||
AP_HAL::TimedProc ArduinoScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
|
||||
uint8_t ArduinoScheduler::_num_timer_procs = 0;
|
||||
bool ArduinoScheduler::_in_timer_proc = false;
|
||||
|
||||
|
||||
ArduinoScheduler::ArduinoScheduler() :
|
||||
_delay_cb(NULL)
|
||||
{}
|
||||
|
||||
void ArduinoScheduler::init(void* _isrregistry) {
|
||||
ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry;
|
||||
|
||||
// this needs to be called before setup() or some functions won't
|
||||
// work there
|
||||
sei();
|
||||
|
@ -39,9 +56,6 @@ void ArduinoScheduler::init() {
|
|||
// put timer 1 in 8-bit phase correct pwm mode
|
||||
sbi(TCCR1A, WGM10);
|
||||
|
||||
// set timer 2 prescale factor to 64
|
||||
sbi(TCCR2B, CS22);
|
||||
|
||||
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
|
||||
sbi(TCCR3B, CS30);
|
||||
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
|
||||
|
@ -69,6 +83,16 @@ void ArduinoScheduler::init() {
|
|||
// here so they can be used as normal digital i/o; they will be
|
||||
// reconnected in Serial.begin()
|
||||
UCSR0B = 0;
|
||||
|
||||
/* TIMER2: Setup the overflow interrupt to occur at 1khz. */
|
||||
TIMSK2 = 0; /* Disable timer interrupt */
|
||||
TCCR2A = 0; /* Normal counting mode */
|
||||
TCCR2B = _BV(CS21) | _BV(CS22); /* Prescaler to clk/256 */
|
||||
TCNT2 = 0; /* Set count to 0 */
|
||||
TIFR2 = _BV(TOV2); /* Clear pending interrupts */
|
||||
TIMSK2 = _BV(TOIE2); /* Enable overflow interrupt*/
|
||||
/* Register _timer_event to trigger on overflow */
|
||||
isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_event);
|
||||
}
|
||||
|
||||
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
|
||||
|
@ -121,7 +145,15 @@ uint32_t ArduinoScheduler::millis()
|
|||
return m;
|
||||
}
|
||||
|
||||
/* micros() is essentially a static method, but we need it to be available
|
||||
* via virtual dispatch through the hal. */
|
||||
uint32_t ArduinoScheduler::micros() {
|
||||
return _micros();
|
||||
}
|
||||
|
||||
/* _micros() is the implementation of micros() as a static private method
|
||||
* so we can use it from inside _timer_event() without virtual dispatch. */
|
||||
uint32_t ArduinoScheduler::_micros() {
|
||||
uint32_t m;
|
||||
uint8_t oldSREG = SREG, t;
|
||||
|
||||
|
@ -145,19 +177,17 @@ void ArduinoScheduler::delay(uint32_t ms)
|
|||
if (((uint16_t)micros() - start) >= 1000) {
|
||||
ms--;
|
||||
start += 1000;
|
||||
if (_delay_cb) {
|
||||
_delay_cb();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
|
||||
/* Delay for the given number of microseconds. Assumes a 16 MHz clock. */
|
||||
void ArduinoScheduler::delay_microseconds(uint16_t us)
|
||||
{
|
||||
// calling avrlib's delay_us() function with low values (e.g. 1 or
|
||||
// 2 microseconds) gives delays longer than desired.
|
||||
//delay_us(us);
|
||||
|
||||
// for the 16 MHz clock on most Arduino boards
|
||||
|
||||
// for a one-microsecond delay, simply return. the overhead
|
||||
// of the function call yields a delay of approximately 1 1/8 us.
|
||||
if (--us == 0)
|
||||
|
@ -178,6 +208,90 @@ void ArduinoScheduler::delay_microseconds(uint16_t us)
|
|||
);
|
||||
}
|
||||
|
||||
void ArduinoScheduler::register_delay_callback(void(*cb)(void)) {
|
||||
/* XXX need to implement */
|
||||
void ArduinoScheduler::register_delay_callback(AP_HAL::Proc proc) {
|
||||
_delay_cb = proc;
|
||||
}
|
||||
|
||||
void ArduinoScheduler::register_timer_process(
|
||||
AP_HAL::TimedProc proc, uint32_t period_us, uint16_t phase) {
|
||||
/* XXX Assert period_us == 1000 */
|
||||
/* XXX phase meaningless */
|
||||
for (int i = 0; i < _num_timer_procs; i++) {
|
||||
if (_timer_proc[i] == proc) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (_num_timer_procs < AVR_SCHEDULER_MAX_TIMER_PROCS) {
|
||||
/* this write to _timer_proc can be outside the critical section
|
||||
* because that memory won't be used until _num_timer_procs is
|
||||
* incremented. */
|
||||
_timer_proc[_num_timer_procs] = proc;
|
||||
/* _num_timer_procs is used from interrupt, and multiple bytes long. */
|
||||
cli();
|
||||
_num_timer_procs++;
|
||||
sei();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void ArduinoScheduler::register_timer_failsafe(
|
||||
AP_HAL::TimedProc failsafe, uint32_t period_us) {
|
||||
/* XXX Assert period_us == 1000 */
|
||||
_failsafe = failsafe;
|
||||
}
|
||||
|
||||
void ArduinoScheduler::suspend_timer_procs() {
|
||||
_timer_suspended = true;
|
||||
}
|
||||
|
||||
void ArduinoScheduler::resume_timer_procs() {
|
||||
_timer_suspended = false;
|
||||
}
|
||||
|
||||
void ArduinoScheduler::_timer_event() {
|
||||
// we enable the interrupt again immediately and also enable
|
||||
// interrupts. This allows other time critical interrupts to
|
||||
// run (such as the serial receive interrupt). We catch the
|
||||
// timer calls taking too long using _in_timer_call.
|
||||
// This approach also gives us a nice uniform spacing between
|
||||
// timer calls
|
||||
|
||||
TCNT2 = RESET_TCNT2_VALUE;
|
||||
sei();
|
||||
|
||||
uint32_t tnow = _micros();
|
||||
if (_in_timer_proc) {
|
||||
// the timer calls took longer than the period of the
|
||||
// timer. This is bad, and may indicate a serious
|
||||
// driver failure. We can't just call the drivers
|
||||
// again, as we could run out of stack. So we only
|
||||
// call the _failsafe call. It's job is to detect if
|
||||
// the drivers or the main loop are indeed dead and to
|
||||
// activate whatever failsafe it thinks may help if
|
||||
// need be. We assume the failsafe code can't
|
||||
// block. If it does then we will recurse and die when
|
||||
// we run out of stack
|
||||
if (_failsafe != NULL) {
|
||||
_failsafe(tnow);
|
||||
}
|
||||
return;
|
||||
}
|
||||
_in_timer_proc = true;
|
||||
|
||||
if (!_timer_suspended) {
|
||||
// now call the timer based drivers
|
||||
for (int i = 0; i < _num_timer_procs; i++) {
|
||||
if (_timer_proc[i] != NULL) {
|
||||
_timer_proc[i](tnow);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// and the failsafe, if one is setup
|
||||
if (_failsafe != NULL) {
|
||||
_failsafe(tnow);
|
||||
}
|
||||
|
||||
_in_timer_proc = false;
|
||||
}
|
||||
|
|
|
@ -5,17 +5,46 @@
|
|||
#include <AP_HAL.h>
|
||||
#include "AP_HAL_AVR_Namespace.h"
|
||||
|
||||
#define AVR_SCHEDULER_MAX_TIMER_PROCS 4
|
||||
|
||||
class AP_HAL_AVR::ArduinoScheduler : public AP_HAL::Scheduler {
|
||||
public:
|
||||
ArduinoScheduler() {}
|
||||
ArduinoScheduler();
|
||||
/* AP_HAL::Scheduler methods */
|
||||
void init();
|
||||
|
||||
/* init: implementation-specific void* argument expected to be an
|
||||
* AP_HAL_AVR::ISRRegistry*. */
|
||||
void init(void *isrregistry);
|
||||
void delay(uint32_t ms);
|
||||
uint32_t millis();
|
||||
uint32_t micros();
|
||||
void delay_microseconds(uint16_t us);
|
||||
void register_delay_callback(void(*cb)(void));
|
||||
};
|
||||
void register_delay_callback(AP_HAL::Proc);
|
||||
void register_timer_process(AP_HAL::TimedProc,
|
||||
uint32_t period_us, uint16_t phase);
|
||||
void register_timer_failsafe(AP_HAL::TimedProc, uint32_t period_us);
|
||||
void suspend_timer_procs();
|
||||
void resume_timer_procs();
|
||||
|
||||
private:
|
||||
/* Implementation specific methods: */
|
||||
/* timer_event() is static so it can be called from an interrupt.
|
||||
* (This is effectively a singleton class.)
|
||||
* _prefix: this method must be public */
|
||||
static void _timer_event();
|
||||
|
||||
/* _micros() is the implementation of micros() as a static private method
|
||||
* so we can use it from inside _timer_event() without virtual dispatch. */
|
||||
static uint32_t _micros();
|
||||
|
||||
AP_HAL::Proc _delay_cb;
|
||||
static AP_HAL::TimedProc _failsafe;
|
||||
|
||||
static volatile bool _timer_suspended;
|
||||
static AP_HAL::TimedProc _timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS];
|
||||
static uint8_t _num_timer_procs;
|
||||
static bool _in_timer_proc;
|
||||
|
||||
};
|
||||
#endif // __AP_HAL_AVR_SCHEDULER_H__
|
||||
|
||||
|
|
Loading…
Reference in New Issue