AC_AutoTune: combine dwell_init methods

This commit is contained in:
Bill Geyer 2022-03-05 22:16:50 -05:00 committed by Randy Mackay
parent bbc259329d
commit ba28227483
2 changed files with 85 additions and 88 deletions

View File

@ -156,11 +156,11 @@ void AC_AutoTune_Heli::test_init()
if (!is_equal(start_freq,stop_freq)) {
// initialize determine_gain function whenever test is initialized
freqresp_rate.init(AC_AutoTune_FreqResp::InputType::SWEEP, AC_AutoTune_FreqResp::ResponseType::RATE);
dwell_test_init(start_freq, stop_freq);
dwell_test_init(start_freq, stop_freq, RATE);
} else {
// initialize determine_gain function whenever test is initialized
freqresp_rate.init(AC_AutoTune_FreqResp::InputType::DWELL, AC_AutoTune_FreqResp::ResponseType::RATE);
dwell_test_init(start_freq, start_freq);
dwell_test_init(start_freq, start_freq, RATE);
}
if (!is_zero(start_freq)) {
// 4 seconds is added to allow aircraft to achieve start attitude. Then the time to conduct the dwells is added to it.
@ -186,11 +186,11 @@ void AC_AutoTune_Heli::test_init()
if (!is_equal(start_freq,stop_freq)) {
// initialize determine gain function
freqresp_angle.init(AC_AutoTune_FreqResp::InputType::SWEEP, AC_AutoTune_FreqResp::ResponseType::ANGLE);
angle_dwell_test_init(start_freq, stop_freq);
dwell_test_init(start_freq, stop_freq, ANGLE);
} else {
// initialize determine gain function
freqresp_angle.init(AC_AutoTune_FreqResp::InputType::DWELL, AC_AutoTune_FreqResp::ResponseType::ANGLE);
angle_dwell_test_init(start_freq, start_freq);
dwell_test_init(start_freq, start_freq, ANGLE);
}
// TODO add time limit for sweep test
@ -910,52 +910,90 @@ void AC_AutoTune_Heli::rate_ff_test_run(float max_angle_cd, float target_rate_cd
}
void AC_AutoTune_Heli::dwell_test_init(float start_frq, float filt_freq)
void AC_AutoTune_Heli::dwell_test_init(float start_frq, float filt_freq, DwellType dwell_type)
{
rotation_rate_filt.reset(0);
rotation_rate_filt.set_cutoff_frequency(filt_freq);
command_filt.reset(0);
command_filt.set_cutoff_frequency(filt_freq);
target_rate_filt.reset(0);
target_rate_filt.set_cutoff_frequency(filt_freq);
filt_target_rate = 0.0f;
dwell_start_time_ms = 0.0f;
settle_time = 200;
if (!is_equal(start_freq, stop_freq)) {
reset_sweep_variables();
curr_test.gain = 0.0f;
curr_test.phase = 0.0f;
rotation_rate_filt.set_cutoff_frequency(filt_freq);
command_filt.set_cutoff_frequency(filt_freq);
target_rate_filt.set_cutoff_frequency(filt_freq);
if (dwell_type == RATE) {
rotation_rate_filt.reset(0);
command_filt.reset(0);
target_rate_filt.reset(0);
rotation_rate = 0.0f;
command_out = 0.0f;
filt_target_rate = 0.0f;
} else {
switch (axis) {
case ROLL:
rotation_rate_filt.reset(((float)ahrs_view->roll_sensor) / 5730.0f);
command_filt.reset(motors->get_roll());
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f);
rotation_rate = ((float)ahrs_view->roll_sensor) / 5730.0f;
command_out = motors->get_roll();
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f;
break;
case PITCH:
rotation_rate_filt.reset(((float)ahrs_view->pitch_sensor) / 5730.0f);
command_filt.reset(motors->get_pitch());
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f);
rotation_rate = ((float)ahrs_view->pitch_sensor) / 5730.0f;
command_out = motors->get_pitch();
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f;
break;
case YAW:
// yaw angle will be centered on zero by removing trim heading
rotation_rate_filt.reset(0.0f);
command_filt.reset(motors->get_yaw());
target_rate_filt.reset(0.0f);
rotation_rate = 0.0f;
command_out = motors->get_yaw();
filt_target_rate = 0.0f;
break;
}
}
// filter at lower frequency to remove steady state
filt_command_reading.set_cutoff_frequency(0.2f * start_frq);
filt_gyro_reading.set_cutoff_frequency(0.2f * start_frq);
filt_tgt_rate_reading.set_cutoff_frequency(0.2f * start_frq);
filt_pit_roll_cd.set_cutoff_frequency(0.2f * start_frq);
filt_heading_error_cd.set_cutoff_frequency(0.2f * start_frq);
filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq);
// save the trim output from PID controller
float ff_term = 0.0f;
float p_term = 0.0f;
switch (axis) {
case ROLL:
trim_meas_rate = ahrs_view->get_gyro().x;
ff_term = attitude_control->get_rate_roll_pid().get_ff();
p_term = attitude_control->get_rate_roll_pid().get_p();
break;
case PITCH:
trim_meas_rate = ahrs_view->get_gyro().y;
ff_term = attitude_control->get_rate_pitch_pid().get_ff();
p_term = attitude_control->get_rate_pitch_pid().get_p();
break;
case YAW:
trim_meas_rate = ahrs_view->get_gyro().z;
ff_term = attitude_control->get_rate_yaw_pid().get_ff();
p_term = attitude_control->get_rate_yaw_pid().get_p();
break;
if (dwell_type == RATE) {
filt_pit_roll_cd.set_cutoff_frequency(0.2f * start_frq);
filt_heading_error_cd.set_cutoff_frequency(0.2f * start_frq);
// save the trim output from PID controller
float ff_term = 0.0f;
float p_term = 0.0f;
switch (axis) {
case ROLL:
trim_meas_rate = ahrs_view->get_gyro().x;
ff_term = attitude_control->get_rate_roll_pid().get_ff();
p_term = attitude_control->get_rate_roll_pid().get_p();
break;
case PITCH:
trim_meas_rate = ahrs_view->get_gyro().y;
ff_term = attitude_control->get_rate_pitch_pid().get_ff();
p_term = attitude_control->get_rate_pitch_pid().get_p();
break;
case YAW:
trim_meas_rate = ahrs_view->get_gyro().z;
ff_term = attitude_control->get_rate_yaw_pid().get_ff();
p_term = attitude_control->get_rate_yaw_pid().get_p();
break;
}
trim_pff_out = ff_term + p_term;
}
if (!is_equal(start_freq, stop_freq)) {
reset_sweep_variables();
curr_test.gain = 0.0f;
curr_test.phase = 0.0f;
}
trim_pff_out = ff_term + p_term;
}
void AC_AutoTune_Heli::dwell_test_run(uint8_t freq_resp_input, float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase)
@ -1163,54 +1201,6 @@ void AC_AutoTune_Heli::dwell_test_run(uint8_t freq_resp_input, float start_frq,
}
}
void AC_AutoTune_Heli::angle_dwell_test_init(float start_frq, float filt_freq)
{
rotation_rate_filt.set_cutoff_frequency(filt_freq);
command_filt.set_cutoff_frequency(filt_freq);
target_rate_filt.set_cutoff_frequency(filt_freq);
dwell_start_time_ms = 0.0f;
settle_time = 200;
switch (axis) {
case ROLL:
rotation_rate_filt.reset(((float)ahrs_view->roll_sensor) / 5730.0f);
command_filt.reset(motors->get_roll());
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f);
rotation_rate = ((float)ahrs_view->roll_sensor) / 5730.0f;
command_out = motors->get_roll();
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f;
break;
case PITCH:
rotation_rate_filt.reset(((float)ahrs_view->pitch_sensor) / 5730.0f);
command_filt.reset(motors->get_pitch());
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f);
rotation_rate = ((float)ahrs_view->pitch_sensor) / 5730.0f;
command_out = motors->get_pitch();
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f;
break;
case YAW:
// yaw angle will be centered on zero by removing trim heading
rotation_rate_filt.reset(0.0f);
command_filt.reset(motors->get_yaw());
target_rate_filt.reset(0.0f);
rotation_rate = 0.0f;
command_out = motors->get_yaw();
filt_target_rate = 0.0f;
break;
}
// filter at lower frequency to remove steady state
filt_command_reading.set_cutoff_frequency(0.2f * start_frq);
filt_gyro_reading.set_cutoff_frequency(0.2f * start_frq);
filt_tgt_rate_reading.set_cutoff_frequency(0.2f * start_frq);
filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq);
if (!is_equal(start_freq, stop_freq)) {
reset_sweep_variables();
curr_test.gain = 0.0f;
curr_test.phase = 0.0f;
}
}
void AC_AutoTune_Heli::angle_dwell_test_run(float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase)
{
float gyro_reading = 0.0f;

View File

@ -136,16 +136,23 @@ private:
// max gain data for rate d tuning
max_gain_data max_rate_d;
// dwell type identifies whether the dwell is ran on rate or angle
enum DwellType {
RATE = 0,
ANGLE = 1,
};
// Feedforward test used to determine Rate FF gain
void rate_ff_test_init();
void rate_ff_test_run(float max_angle_cds, float target_rate_cds, float dir_sign);
// initialize dwell test or angle dwell test variables
void dwell_test_init(float start_frq, float filt_freq, DwellType dwell_type);
// dwell test used to perform frequency dwells for rate gains
void dwell_test_init(float start_frq, float filt_freq);
void dwell_test_run(uint8_t freq_resp_input, float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase);
// dwell test used to perform frequency dwells for angle gains
void angle_dwell_test_init(float start_frq, float filt_freq);
void angle_dwell_test_run(float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase);
// generates waveform for frequency sweep excitations