mirror of https://github.com/ArduPilot/ardupilot
SITL: split MAVLink and physical gimbal simulations
This commit is contained in:
parent
ed3aeb39fd
commit
ba135b9008
|
@ -0,0 +1,184 @@
|
|||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
gimbal simulator class for gimbal
|
||||
*/
|
||||
|
||||
#include "SIM_Gimbal.h"
|
||||
|
||||
#if AP_SIM_GIMBAL_ENABLED
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "SIM_Aircraft.h"
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
#define GIMBAL_DEBUG 0
|
||||
|
||||
#if GIMBAL_DEBUG
|
||||
#define debug(fmt, args...) do { printf("GIMBAL: " fmt, ##args); } while(0)
|
||||
#else
|
||||
#define debug(fmt, args...) do { } while(0)
|
||||
#endif
|
||||
|
||||
namespace SITL {
|
||||
|
||||
/*
|
||||
update the gimbal state
|
||||
*/
|
||||
void Gimbal::update(const class Aircraft &aircraft)
|
||||
{
|
||||
// calculate delta time in seconds
|
||||
uint32_t now_us = AP_HAL::micros();
|
||||
|
||||
float delta_t = (now_us - last_update_us) * 1.0e-6f;
|
||||
last_update_us = now_us;
|
||||
|
||||
const Matrix3f &vehicle_dcm = aircraft.get_dcm();
|
||||
if (!init_done) {
|
||||
dcm = vehicle_dcm;
|
||||
}
|
||||
|
||||
const Vector3f &vehicle_gyro = AP::ins().get_gyro();
|
||||
const Vector3f &vehicle_accel_body = AP::ins().get_accel();
|
||||
|
||||
// take a copy of the demanded rates to bypass the limiter function for testing
|
||||
Vector3f demRateRaw = demanded_angular_rate;
|
||||
|
||||
// 1) Rotate the copters rotation rates into the gimbals frame of reference
|
||||
// copterAngRate_G = transpose(DCMgimbal)*DCMcopter*copterAngRate
|
||||
Vector3f copterAngRate_G = dcm.transposed()*vehicle_dcm*vehicle_gyro;
|
||||
|
||||
// 2) Subtract the copters body rates to obtain a copter relative rotational
|
||||
// rate vector (X,Y,Z) in gimbal sensor frame
|
||||
// relativeGimbalRate(X,Y,Z) = gimbalRateDemand - copterAngRate_G
|
||||
Vector3f relativeGimbalRate = demanded_angular_rate - copterAngRate_G;
|
||||
|
||||
// calculate joint angles (euler312 order)
|
||||
// calculate copter -> gimbal rotation matrix
|
||||
Matrix3f rotmat_copter_gimbal = dcm.transposed() * vehicle_dcm;
|
||||
|
||||
joint_angles = rotmat_copter_gimbal.transposed().to_euler312();
|
||||
|
||||
/* 4) For each of the three joints, calculate upper and lower rate limits
|
||||
from the corresponding angle limits and current joint angles
|
||||
|
||||
upperRatelimit = (jointAngle - lowerAngleLimit) * travelLimitGain
|
||||
lowerRatelimit = (jointAngle - upperAngleLimit) * travelLimitGain
|
||||
|
||||
travelLimitGain is equal to the inverse of the bump stop time constant and
|
||||
should be set to something like 20 initially. If set too high it can cause
|
||||
the rates to 'ring' when they the limiter is in force, particularly given
|
||||
we are using a first order numerical integration.
|
||||
*/
|
||||
Vector3f upperRatelimit = -(joint_angles - upper_joint_limits) * travelLimitGain;
|
||||
Vector3f lowerRatelimit = -(joint_angles - lower_joint_limits) * travelLimitGain;
|
||||
|
||||
/*
|
||||
5) Calculate the gimbal joint rates (roll, elevation, azimuth)
|
||||
|
||||
gimbalJointRates(roll, elev, azimuth) = Matrix*relativeGimbalRate(X,Y,Z)
|
||||
|
||||
where matrix =
|
||||
+- -+
|
||||
| cos(elevAngle), 0, sin(elevAngle) |
|
||||
| |
|
||||
| sin(elevAngle) tan(rollAngle), 1, -cos(elevAngle) tan(rollAngle) |
|
||||
| |
|
||||
| sin(elevAngle) cos(elevAngle) |
|
||||
| - --------------, 0, -------------- |
|
||||
| cos(rollAngle) cos(rollAngle) |
|
||||
+- -+
|
||||
*/
|
||||
float rollAngle = joint_angles.x;
|
||||
float elevAngle = joint_angles.y;
|
||||
Matrix3f matrix = Matrix3f(Vector3f(cosf(elevAngle), 0, sinf(elevAngle)),
|
||||
Vector3f(sinf(elevAngle)*tanf(rollAngle), 1, -cosf(elevAngle)*tanf(rollAngle)),
|
||||
Vector3f(-sinf(elevAngle)/cosf(rollAngle), 0, cosf(elevAngle)/cosf(rollAngle)));
|
||||
Vector3f gimbalJointRates = matrix * relativeGimbalRate;
|
||||
|
||||
// 6) Apply the rate limits from 4)
|
||||
gimbalJointRates.x = constrain_float(gimbalJointRates.x, lowerRatelimit.x, upperRatelimit.x);
|
||||
gimbalJointRates.y = constrain_float(gimbalJointRates.y, lowerRatelimit.y, upperRatelimit.y);
|
||||
gimbalJointRates.z = constrain_float(gimbalJointRates.z, lowerRatelimit.z, upperRatelimit.z);
|
||||
/*
|
||||
7) Convert the modified gimbal joint rates to body rates (still copter
|
||||
relative)
|
||||
relativeGimbalRate(X,Y,Z) = Matrix * gimbalJointRates(roll, elev, azimuth)
|
||||
|
||||
where Matrix =
|
||||
|
||||
+- -+
|
||||
| cos(elevAngle), 0, -cos(rollAngle) sin(elevAngle) |
|
||||
| |
|
||||
| 0, 1, sin(rollAngle) |
|
||||
| |
|
||||
| sin(elevAngle), 0, cos(elevAngle) cos(rollAngle) |
|
||||
+- -+
|
||||
*/
|
||||
matrix = Matrix3f(Vector3f(cosf(elevAngle), 0, -cosf(rollAngle)*sinf(elevAngle)),
|
||||
Vector3f(0, 1, sinf(rollAngle)),
|
||||
Vector3f(sinf(elevAngle), 0, cosf(elevAngle)*cosf(rollAngle)));
|
||||
relativeGimbalRate = matrix * gimbalJointRates;
|
||||
|
||||
// 8) Add to the result from step 1) to obtain the demanded gimbal body rates
|
||||
// in an inertial frame of reference
|
||||
// demandedGimbalRatesInertial(X,Y,Z) = relativeGimbalRate(X,Y,Z) + copterAngRate_G
|
||||
// Vector3f demandedGimbalRatesInertial = relativeGimbalRate + copterAngRate_G;
|
||||
|
||||
// for the moment we will set gyros equal to demanded_angular_rate
|
||||
gimbal_angular_rate = demRateRaw; // demandedGimbalRatesInertial + true_gyro_bias - supplied_gyro_bias
|
||||
|
||||
// update rotation of the gimbal
|
||||
dcm.rotate(gimbal_angular_rate*delta_t);
|
||||
dcm.normalize();
|
||||
|
||||
// calculate copter -> gimbal rotation matrix
|
||||
rotmat_copter_gimbal = dcm.transposed() * vehicle_dcm;
|
||||
|
||||
// calculate joint angles (euler312 order)
|
||||
joint_angles = rotmat_copter_gimbal.transposed().to_euler312();
|
||||
|
||||
// update observed gyro
|
||||
gyro = gimbal_angular_rate + true_gyro_bias;
|
||||
|
||||
// update delta_angle (integrate)
|
||||
delta_angle += gyro * delta_t;
|
||||
|
||||
// calculate accel in gimbal body frame
|
||||
Vector3f copter_accel_earth = vehicle_dcm * vehicle_accel_body;
|
||||
Vector3f accel = dcm.transposed() * copter_accel_earth;
|
||||
|
||||
// integrate velocity
|
||||
delta_velocity += accel * delta_t;
|
||||
}
|
||||
|
||||
void Gimbal::get_deltas(Vector3f &_delta_angle, Vector3f &_delta_velocity, uint32_t &_delta_time_us)
|
||||
{
|
||||
const uint32_t now_us = AP_HAL::micros();
|
||||
|
||||
_delta_angle = delta_angle;
|
||||
_delta_velocity = delta_velocity;
|
||||
_delta_time_us = now_us - delta_start_us;
|
||||
|
||||
delta_angle.zero();
|
||||
delta_velocity.zero();
|
||||
delta_start_us = now_us;
|
||||
}
|
||||
|
||||
} // namespace SITL
|
||||
|
||||
#endif // AP_SIM_GIMBAL_ENABLED
|
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
gimbal simulator class
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "SIM_config.h"
|
||||
|
||||
#if AP_SIM_GIMBAL_ENABLED
|
||||
|
||||
#include <AP_Math/AP_Math.h>
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
|
||||
namespace SITL {
|
||||
|
||||
class Gimbal {
|
||||
public:
|
||||
|
||||
void update(const class Aircraft &aircraft);
|
||||
void set_demanded_rates(const Vector3f &rates) {
|
||||
demanded_angular_rate = rates;
|
||||
}
|
||||
|
||||
void get_deltas(Vector3f &_delta_angle, Vector3f &_delta_velocity, uint32_t &_delta_time_us);
|
||||
void get_joint_angles(Vector3f &_angles) { _angles = joint_angles; }
|
||||
|
||||
private:
|
||||
|
||||
// rotation matrix (gimbal body -> earth)
|
||||
Matrix3f dcm;
|
||||
bool init_done;
|
||||
|
||||
// time of last update
|
||||
uint32_t last_update_us;
|
||||
|
||||
// true angular rate of gimbal in body frame (rad/s)
|
||||
Vector3f gimbal_angular_rate;
|
||||
|
||||
// observed angular rate (including biases)
|
||||
Vector3f gyro;
|
||||
|
||||
/* joint angles, in radians. in yaw/roll/pitch order. Relative to fwd.
|
||||
So 0,0,0 points forward.
|
||||
Pi/2,0,0 means pointing right
|
||||
0, Pi/2, 0 means pointing fwd, but rolled 90 degrees to right
|
||||
0, 0, -Pi/2, means pointing down
|
||||
*/
|
||||
Vector3f joint_angles;
|
||||
|
||||
// physical constraints on joint angles in (roll, pitch, azimuth) order
|
||||
Vector3f lower_joint_limits{radians(-40), radians(-135), radians(-7.5)};
|
||||
Vector3f upper_joint_limits{radians(40), radians(45), radians(7.5)};
|
||||
|
||||
const float travelLimitGain = 20;
|
||||
|
||||
// true gyro bias
|
||||
Vector3f true_gyro_bias;
|
||||
|
||||
// time since delta angles/velocities returned
|
||||
uint32_t delta_start_us;
|
||||
|
||||
// integral of gyro vector over last time interval. In radians
|
||||
Vector3f delta_angle;
|
||||
|
||||
// integral of accel vector over last time interval. In m/s
|
||||
Vector3f delta_velocity;
|
||||
|
||||
/*
|
||||
control variables from the vehicle
|
||||
*/
|
||||
// angular rate in rad/s. In body frame of gimbal
|
||||
Vector3f demanded_angular_rate;
|
||||
|
||||
// gyro bias provided by EKF on vehicle. In rad/s.
|
||||
// Should be subtracted from the gyro readings to get true body
|
||||
// rotatation rates
|
||||
// Vector3f supplied_gyro_bias;
|
||||
};
|
||||
|
||||
} // namespace SITL
|
||||
|
||||
#endif // AP_SIM_GIMBAL_ENABLED
|
|
@ -36,149 +36,12 @@ extern const AP_HAL::HAL& hal;
|
|||
|
||||
namespace SITL {
|
||||
|
||||
SoloGimbal::SoloGimbal(const struct sitl_fdm &_fdm) :
|
||||
fdm(_fdm),
|
||||
target_address("127.0.0.1"),
|
||||
target_port(5762),
|
||||
lower_joint_limits(radians(-40), radians(-135), radians(-7.5)),
|
||||
upper_joint_limits(radians(40), radians(45), radians(7.5)),
|
||||
travelLimitGain(20),
|
||||
reporting_period_ms(10),
|
||||
seen_heartbeat(false),
|
||||
seen_gimbal_control(false),
|
||||
mav_socket(false)
|
||||
{
|
||||
memset(&mavlink, 0, sizeof(mavlink));
|
||||
fdm.quaternion.rotation_matrix(dcm);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
update the gimbal state
|
||||
*/
|
||||
void SoloGimbal::update(void)
|
||||
void SoloGimbal::update(const Aircraft &aircraft)
|
||||
{
|
||||
// calculate delta time in seconds
|
||||
uint32_t now_us = AP_HAL::micros();
|
||||
|
||||
float delta_t = (now_us - last_update_us) * 1.0e-6f;
|
||||
last_update_us = now_us;
|
||||
|
||||
Matrix3f vehicle_dcm;
|
||||
fdm.quaternion.rotation_matrix(vehicle_dcm);
|
||||
|
||||
const Vector3f &vehicle_gyro = AP::ins().get_gyro();
|
||||
const Vector3f &vehicle_accel_body = AP::ins().get_accel();
|
||||
|
||||
// take a copy of the demanded rates to bypass the limiter function for testing
|
||||
Vector3f demRateRaw = demanded_angular_rate;
|
||||
|
||||
// 1) Rotate the copters rotation rates into the gimbals frame of reference
|
||||
// copterAngRate_G = transpose(DCMgimbal)*DCMcopter*copterAngRate
|
||||
Vector3f copterAngRate_G = dcm.transposed()*vehicle_dcm*vehicle_gyro;
|
||||
|
||||
// 2) Subtract the copters body rates to obtain a copter relative rotational
|
||||
// rate vector (X,Y,Z) in gimbal sensor frame
|
||||
// relativeGimbalRate(X,Y,Z) = gimbalRateDemand - copterAngRate_G
|
||||
Vector3f relativeGimbalRate = demanded_angular_rate - copterAngRate_G;
|
||||
|
||||
// calculate joint angles (euler312 order)
|
||||
// calculate copter -> gimbal rotation matrix
|
||||
Matrix3f rotmat_copter_gimbal = dcm.transposed() * vehicle_dcm;
|
||||
|
||||
joint_angles = rotmat_copter_gimbal.transposed().to_euler312();
|
||||
|
||||
/* 4) For each of the three joints, calculate upper and lower rate limits
|
||||
from the corresponding angle limits and current joint angles
|
||||
|
||||
upperRatelimit = (jointAngle - lowerAngleLimit) * travelLimitGain
|
||||
lowerRatelimit = (jointAngle - upperAngleLimit) * travelLimitGain
|
||||
|
||||
travelLimitGain is equal to the inverse of the bump stop time constant and
|
||||
should be set to something like 20 initially. If set too high it can cause
|
||||
the rates to 'ring' when they the limiter is in force, particularly given
|
||||
we are using a first order numerical integration.
|
||||
*/
|
||||
Vector3f upperRatelimit = -(joint_angles - upper_joint_limits) * travelLimitGain;
|
||||
Vector3f lowerRatelimit = -(joint_angles - lower_joint_limits) * travelLimitGain;
|
||||
|
||||
/*
|
||||
5) Calculate the gimbal joint rates (roll, elevation, azimuth)
|
||||
|
||||
gimbalJointRates(roll, elev, azimuth) = Matrix*relativeGimbalRate(X,Y,Z)
|
||||
|
||||
where matrix =
|
||||
+- -+
|
||||
| cos(elevAngle), 0, sin(elevAngle) |
|
||||
| |
|
||||
| sin(elevAngle) tan(rollAngle), 1, -cos(elevAngle) tan(rollAngle) |
|
||||
| |
|
||||
| sin(elevAngle) cos(elevAngle) |
|
||||
| - --------------, 0, -------------- |
|
||||
| cos(rollAngle) cos(rollAngle) |
|
||||
+- -+
|
||||
*/
|
||||
float rollAngle = joint_angles.x;
|
||||
float elevAngle = joint_angles.y;
|
||||
Matrix3f matrix = Matrix3f(Vector3f(cosf(elevAngle), 0, sinf(elevAngle)),
|
||||
Vector3f(sinf(elevAngle)*tanf(rollAngle), 1, -cosf(elevAngle)*tanf(rollAngle)),
|
||||
Vector3f(-sinf(elevAngle)/cosf(rollAngle), 0, cosf(elevAngle)/cosf(rollAngle)));
|
||||
Vector3f gimbalJointRates = matrix * relativeGimbalRate;
|
||||
|
||||
// 6) Apply the rate limits from 4)
|
||||
gimbalJointRates.x = constrain_float(gimbalJointRates.x, lowerRatelimit.x, upperRatelimit.x);
|
||||
gimbalJointRates.y = constrain_float(gimbalJointRates.y, lowerRatelimit.y, upperRatelimit.y);
|
||||
gimbalJointRates.z = constrain_float(gimbalJointRates.z, lowerRatelimit.z, upperRatelimit.z);
|
||||
/*
|
||||
7) Convert the modified gimbal joint rates to body rates (still copter
|
||||
relative)
|
||||
relativeGimbalRate(X,Y,Z) = Matrix * gimbalJointRates(roll, elev, azimuth)
|
||||
|
||||
where Matrix =
|
||||
|
||||
+- -+
|
||||
| cos(elevAngle), 0, -cos(rollAngle) sin(elevAngle) |
|
||||
| |
|
||||
| 0, 1, sin(rollAngle) |
|
||||
| |
|
||||
| sin(elevAngle), 0, cos(elevAngle) cos(rollAngle) |
|
||||
+- -+
|
||||
*/
|
||||
matrix = Matrix3f(Vector3f(cosf(elevAngle), 0, -cosf(rollAngle)*sinf(elevAngle)),
|
||||
Vector3f(0, 1, sinf(rollAngle)),
|
||||
Vector3f(sinf(elevAngle), 0, cosf(elevAngle)*cosf(rollAngle)));
|
||||
relativeGimbalRate = matrix * gimbalJointRates;
|
||||
|
||||
// 8) Add to the result from step 1) to obtain the demanded gimbal body rates
|
||||
// in an inertial frame of reference
|
||||
// demandedGimbalRatesInertial(X,Y,Z) = relativeGimbalRate(X,Y,Z) + copterAngRate_G
|
||||
// Vector3f demandedGimbalRatesInertial = relativeGimbalRate + copterAngRate_G;
|
||||
|
||||
// for the moment we will set gyros equal to demanded_angular_rate
|
||||
gimbal_angular_rate = demRateRaw; // demandedGimbalRatesInertial + true_gyro_bias - supplied_gyro_bias
|
||||
|
||||
// update rotation of the gimbal
|
||||
dcm.rotate(gimbal_angular_rate*delta_t);
|
||||
dcm.normalize();
|
||||
|
||||
// calculate copter -> gimbal rotation matrix
|
||||
rotmat_copter_gimbal = dcm.transposed() * vehicle_dcm;
|
||||
|
||||
// calculate joint angles (euler312 order)
|
||||
joint_angles = rotmat_copter_gimbal.transposed().to_euler312();
|
||||
|
||||
// update observed gyro
|
||||
gyro = gimbal_angular_rate + true_gyro_bias;
|
||||
|
||||
// update delta_angle (integrate)
|
||||
delta_angle += gyro * delta_t;
|
||||
|
||||
// calculate accel in gimbal body frame
|
||||
Vector3f copter_accel_earth = vehicle_dcm * vehicle_accel_body;
|
||||
Vector3f accel = dcm.transposed() * copter_accel_earth;
|
||||
|
||||
// integrate velocity
|
||||
delta_velocity += accel * delta_t;
|
||||
gimbal.update(aircraft);
|
||||
|
||||
// see if we should do a report
|
||||
send_report();
|
||||
|
@ -306,11 +169,9 @@ void SoloGimbal::send_report(void)
|
|||
}
|
||||
mavlink_gimbal_control_t pkt;
|
||||
mavlink_msg_gimbal_control_decode(&msg, &pkt);
|
||||
demanded_angular_rate = Vector3f(pkt.demanded_rate_x,
|
||||
pkt.demanded_rate_y,
|
||||
pkt.demanded_rate_z);
|
||||
// no longer supply a bias
|
||||
supplied_gyro_bias.zero();
|
||||
gimbal.set_demanded_rates(Vector3f(pkt.demanded_rate_x,
|
||||
pkt.demanded_rate_y,
|
||||
pkt.demanded_rate_z));
|
||||
seen_gimbal_control = true;
|
||||
break;
|
||||
}
|
||||
|
@ -375,12 +236,20 @@ void SoloGimbal::send_report(void)
|
|||
*/
|
||||
uint32_t now_us = AP_HAL::micros();
|
||||
if (now_us - last_report_us > reporting_period_ms*1000UL) {
|
||||
mavlink_gimbal_report_t gimbal_report;
|
||||
float delta_time = (now_us - last_report_us) * 1.0e-6f;
|
||||
last_report_us = now_us;
|
||||
|
||||
uint32_t delta_time_us;
|
||||
Vector3f delta_angle;
|
||||
Vector3f delta_velocity;
|
||||
gimbal.get_deltas(delta_angle, delta_velocity, delta_time_us);
|
||||
|
||||
Vector3f joint_angles;
|
||||
gimbal.get_joint_angles(joint_angles);
|
||||
|
||||
mavlink_gimbal_report_t gimbal_report;
|
||||
gimbal_report.target_system = vehicle_system_id;
|
||||
gimbal_report.target_component = vehicle_component_id;
|
||||
gimbal_report.delta_time = delta_time;
|
||||
gimbal_report.delta_time = delta_time_us * 1e-6;
|
||||
gimbal_report.delta_angle_x = delta_angle.x;
|
||||
gimbal_report.delta_angle_y = delta_angle.y;
|
||||
gimbal_report.delta_angle_z = delta_angle.z;
|
||||
|
|
|
@ -27,6 +27,8 @@ rc 6 1818 # for neutral pitch input
|
|||
|
||||
#if AP_SIM_SOLOGIMBAL_ENABLED
|
||||
|
||||
#include "SIM_Gimbal.h"
|
||||
|
||||
#include <AP_Math/AP_Math.h>
|
||||
#include <GCS_MAVLink/GCS_MAVLink.h>
|
||||
#include <AP_HAL/utility/Socket_native.h>
|
||||
|
@ -35,65 +37,23 @@ namespace SITL {
|
|||
|
||||
class SoloGimbal {
|
||||
public:
|
||||
SoloGimbal(const struct sitl_fdm &_fdm);
|
||||
void update(void);
|
||||
|
||||
SoloGimbal() {}
|
||||
void update(const Aircraft &aicraft);
|
||||
|
||||
private:
|
||||
const struct sitl_fdm &fdm;
|
||||
const char *target_address;
|
||||
const uint16_t target_port;
|
||||
|
||||
// rotation matrix (gimbal body -> earth)
|
||||
Matrix3f dcm;
|
||||
const char *target_address = "127.0.0.1";
|
||||
const uint16_t target_port = 5762;
|
||||
|
||||
// time of last update
|
||||
uint32_t last_update_us;
|
||||
|
||||
// true angular rate of gimbal in body frame (rad/s)
|
||||
Vector3f gimbal_angular_rate;
|
||||
|
||||
// observed angular rate (including biases)
|
||||
Vector3f gyro;
|
||||
|
||||
/* joint angles, in radians. in yaw/roll/pitch order. Relative to fwd.
|
||||
So 0,0,0 points forward.
|
||||
Pi/2,0,0 means pointing right
|
||||
0, Pi/2, 0 means pointing fwd, but rolled 90 degrees to right
|
||||
0, 0, -Pi/2, means pointing down
|
||||
*/
|
||||
Vector3f joint_angles;
|
||||
|
||||
// physical constraints on joint angles in (roll, pitch, azimuth) order
|
||||
Vector3f lower_joint_limits;
|
||||
Vector3f upper_joint_limits;
|
||||
|
||||
const float travelLimitGain;
|
||||
|
||||
// true gyro bias
|
||||
Vector3f true_gyro_bias;
|
||||
// physic simulation of gimbal:
|
||||
Gimbal gimbal;
|
||||
|
||||
// reporting variables. gimbal pushes these to vehicle code over
|
||||
// MAVLink at approx 100Hz
|
||||
|
||||
// reporting period in ms
|
||||
const float reporting_period_ms;
|
||||
|
||||
// integral of gyro vector over last time interval. In radians
|
||||
Vector3f delta_angle;
|
||||
|
||||
// integral of accel vector over last time interval. In m/s
|
||||
Vector3f delta_velocity;
|
||||
|
||||
/*
|
||||
control variables from the vehicle
|
||||
*/
|
||||
// angular rate in rad/s. In body frame of gimbal
|
||||
Vector3f demanded_angular_rate;
|
||||
|
||||
// gyro bias provided by EKF on vehicle. In rad/s.
|
||||
// Should be subtracted from the gyro readings to get true body
|
||||
// rotatation rates
|
||||
Vector3f supplied_gyro_bias;
|
||||
const float reporting_period_ms = 10;
|
||||
|
||||
uint32_t last_report_us;
|
||||
uint32_t last_heartbeat_ms;
|
||||
|
@ -102,7 +62,7 @@ private:
|
|||
uint8_t vehicle_system_id;
|
||||
uint8_t vehicle_component_id;
|
||||
|
||||
SocketAPM_native mav_socket;
|
||||
SocketAPM_native mav_socket{false};
|
||||
struct {
|
||||
// socket to telem2 on aircraft
|
||||
bool connected;
|
||||
|
|
|
@ -123,5 +123,10 @@
|
|||
#endif
|
||||
|
||||
#ifndef AP_SIM_SOLOGIMBAL_ENABLED
|
||||
#define AP_SIM_SOLOGIMBAL_ENABLED (CONFIG_HAL_BOARD == HAL_BOARD_SITL)
|
||||
#define AP_SIM_SOLOGIMBAL_ENABLED (CONFIG_HAL_BOARD == HAL_BOARD_SITL && HAL_MAVLINK_BINDINGS_ENABLED)
|
||||
#endif
|
||||
|
||||
#ifndef AP_SIM_GIMBAL_ENABLED
|
||||
#define AP_SIM_GIMBAL_ENABLED (AP_SIM_SOLOGIMBAL_ENABLED)
|
||||
#endif
|
||||
|
||||
|
|
Loading…
Reference in New Issue