AC_PosControl: alt hold controller update

pass accel limit top_pos_xy
prearm check updated
fix PSC_VELZ_FLTE/D param descriptions
fix VelZ FF param desc
limit maximum desired z component
integrate AC_PID_Basic
This commit is contained in:
Leonard Hall 2020-01-04 16:46:09 +10:30 committed by Randy Mackay
parent b73ad1a1bc
commit ba00c2edd6
2 changed files with 169 additions and 219 deletions

View File

@ -9,6 +9,9 @@ extern const AP_HAL::HAL& hal;
// default gains for Plane // default gains for Plane
# define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default # define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default
# define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default # define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default
# define POSCONTROL_VEL_Z_IMAX 1000.0f // vertical velocity controller IMAX gain default
# define POSCONTROL_VEL_Z_FILT_HZ 5.0f // vertical velocity controller input filter
# define POSCONTROL_VEL_Z_FILT_D_HZ 5.0f // vertical velocity controller input filter for D
# define POSCONTROL_ACC_Z_P 0.3f // vertical acceleration controller P gain default # define POSCONTROL_ACC_Z_P 0.3f // vertical acceleration controller P gain default
# define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default # define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
@ -26,6 +29,9 @@ extern const AP_HAL::HAL& hal;
// default gains for Sub // default gains for Sub
# define POSCONTROL_POS_Z_P 3.0f // vertical position controller P gain default # define POSCONTROL_POS_Z_P 3.0f // vertical position controller P gain default
# define POSCONTROL_VEL_Z_P 8.0f // vertical velocity controller P gain default # define POSCONTROL_VEL_Z_P 8.0f // vertical velocity controller P gain default
# define POSCONTROL_VEL_Z_IMAX 1000.0f // vertical velocity controller IMAX gain default
# define POSCONTROL_VEL_Z_FILT_HZ 5.0f // vertical velocity controller input filter
# define POSCONTROL_VEL_Z_FILT_D_HZ 5.0f // vertical velocity controller input filter for D
# define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default # define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default
# define POSCONTROL_ACC_Z_I 0.1f // vertical acceleration controller I gain default # define POSCONTROL_ACC_Z_I 0.1f // vertical acceleration controller I gain default
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
@ -43,6 +49,9 @@ extern const AP_HAL::HAL& hal;
// default gains for Copter / TradHeli // default gains for Copter / TradHeli
# define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default # define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default
# define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default # define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default
# define POSCONTROL_VEL_Z_IMAX 1000.0f // vertical velocity controller IMAX gain default
# define POSCONTROL_VEL_Z_FILT_HZ 5.0f // vertical velocity controller input filter
# define POSCONTROL_VEL_Z_FILT_D_HZ 5.0f // vertical velocity controller input filter for D
# define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default # define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default
# define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default # define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
@ -79,14 +88,55 @@ const AP_Param::GroupInfo AC_PosControl::var_info[] = {
// @Description: Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller // @Description: Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller
// @Range: 1.000 3.000 // @Range: 1.000 3.000
// @User: Standard // @User: Standard
AP_SUBGROUPINFO(_p_pos_z, "_POSZ_", 2, AC_PosControl, AC_P), AP_SUBGROUPINFO(_p_pos_z, "_POSZ_", 2, AC_PosControl, AC_P_1D),
// @Param: _VELZ_P // @Param: _VELZ_P
// @DisplayName: Velocity (vertical) controller P gain // @DisplayName: Velocity (vertical) controller P gain
// @Description: Velocity (vertical) controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller // @Description: Velocity (vertical) controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller
// @Range: 1.000 8.000 // @Range: 1.000 8.000
// @User: Standard // @User: Standard
AP_SUBGROUPINFO(_p_vel_z, "_VELZ_", 3, AC_PosControl, AC_P),
// @Param: _VELZ_I
// @DisplayName: Velocity (vertical) controller I gain
// @Description: Velocity (vertical) controller I gain. Corrects long-term difference in desired velocity to a target acceleration
// @Range: 0.02 1.00
// @Increment: 0.01
// @User: Advanced
// @Param: _VELZ_IMAX
// @DisplayName: Velocity (vertical) controller I gain maximum
// @Description: Velocity (vertical) controller I gain maximum. Constrains the target acceleration that the I gain will output
// @Range: 1.000 8.000
// @User: Standard
// @Param: _VELZ_D
// @DisplayName: Velocity (vertical) controller D gain
// @Description: Velocity (vertical) controller D gain. Corrects short-term changes in velocity
// @Range: 0.00 1.00
// @Increment: 0.001
// @User: Advanced
// @Param: _VELZ_FF
// @DisplayName: Velocity (vertical) controller Feed Forward gain
// @Description: Velocity (vertical) controller Feed Forward gain. Produces an output that is proportional to the magnitude of the target
// @Range: 0 1
// @Increment: 0.01
// @User: Advanced
// @Param: _VELZ_FLTE
// @DisplayName: Velocity (vertical) error filter
// @Description: Velocity (vertical) error filter. This filter (in hz) is applied to the input for P and I terms
// @Range: 0 100
// @Units: Hz
// @User: Advanced
// @Param: _VELZ_FLTD
// @DisplayName: Velocity (vertical) input filter for D term
// @Description: Velocity (vertical) input filter for D term. This filter (in hz) is applied to the input for D terms
// @Range: 0 100
// @Units: Hz
// @User: Advanced
AP_SUBGROUPINFO(_pid_vel_z, "_VELZ_", 3, AC_PosControl, AC_PID_Basic),
// @Param: _ACCZ_P // @Param: _ACCZ_P
// @DisplayName: Acceleration (vertical) controller P gain // @DisplayName: Acceleration (vertical) controller P gain
@ -159,18 +209,18 @@ const AP_Param::GroupInfo AC_PosControl::var_info[] = {
// @Description: Position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller // @Description: Position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller
// @Range: 0.500 2.000 // @Range: 0.500 2.000
// @User: Standard // @User: Standard
AP_SUBGROUPINFO(_p_pos_xy, "_POSXY_", 5, AC_PosControl, AC_P), AP_SUBGROUPINFO(_p_pos_xy, "_POSXY_", 5, AC_PosControl, AC_P_2D),
// @Param: _VELXY_P // @Param: _VELXY_P
// @DisplayName: Velocity (horizontal) P gain // @DisplayName: Velocity (horizontal) P gain
// @Description: Velocity (horizontal) P gain. Converts the difference between desired velocity to a target acceleration // @Description: Velocity (horizontal) P gain. Converts the difference between desired and actual velocity to a target acceleration
// @Range: 0.1 6.0 // @Range: 0.1 6.0
// @Increment: 0.1 // @Increment: 0.1
// @User: Advanced // @User: Advanced
// @Param: _VELXY_I // @Param: _VELXY_I
// @DisplayName: Velocity (horizontal) I gain // @DisplayName: Velocity (horizontal) I gain
// @Description: Velocity (horizontal) I gain. Corrects long-term difference in desired velocity to a target acceleration // @Description: Velocity (horizontal) I gain. Corrects long-term difference between desired and actual velocity to a target acceleration
// @Range: 0.02 1.00 // @Range: 0.02 1.00
// @Increment: 0.01 // @Increment: 0.01
// @User: Advanced // @User: Advanced
@ -203,6 +253,13 @@ const AP_Param::GroupInfo AC_PosControl::var_info[] = {
// @Range: 0 100 // @Range: 0 100
// @Units: Hz // @Units: Hz
// @User: Advanced // @User: Advanced
// @Param: _VELXY_FF
// @DisplayName: Velocity (horizontal) feed forward gains
// @Description: Velocity (horizontal) feed forward gain. Converts the difference between desired velocity to a target acceleration
// @Range: 0 6
// @Increment: 0.01
// @User: Advanced
AP_SUBGROUPINFO(_pid_vel_xy, "_VELXY_", 6, AC_PosControl, AC_PID_2D), AP_SUBGROUPINFO(_pid_vel_xy, "_VELXY_", 6, AC_PosControl, AC_PID_2D),
// @Param: _ANGLE_MAX // @Param: _ANGLE_MAX
@ -227,11 +284,11 @@ AC_PosControl::AC_PosControl(AP_AHRS_View& ahrs, const AP_InertialNav& inav,
_inav(inav), _inav(inav),
_motors(motors), _motors(motors),
_attitude_control(attitude_control), _attitude_control(attitude_control),
_p_pos_z(POSCONTROL_POS_Z_P), _p_pos_z(POSCONTROL_POS_Z_P, POSCONTROL_DT_400HZ),
_p_vel_z(POSCONTROL_VEL_Z_P), _pid_vel_z(POSCONTROL_VEL_Z_P, 0.0f, 0.0f, 0.0f, POSCONTROL_VEL_Z_IMAX, POSCONTROL_VEL_Z_FILT_HZ, POSCONTROL_VEL_Z_FILT_D_HZ, POSCONTROL_DT_400HZ),
_pid_accel_z(POSCONTROL_ACC_Z_P, POSCONTROL_ACC_Z_I, POSCONTROL_ACC_Z_D, 0.0f, POSCONTROL_ACC_Z_IMAX, 0.0f, POSCONTROL_ACC_Z_FILT_HZ, 0.0f, POSCONTROL_ACC_Z_DT), _pid_accel_z(POSCONTROL_ACC_Z_P, POSCONTROL_ACC_Z_I, POSCONTROL_ACC_Z_D, 0.0f, POSCONTROL_ACC_Z_IMAX, 0.0f, POSCONTROL_ACC_Z_FILT_HZ, 0.0f, POSCONTROL_DT_400HZ),
_p_pos_xy(POSCONTROL_POS_XY_P), _p_pos_xy(POSCONTROL_POS_XY_P, POSCONTROL_DT_400HZ),
_pid_vel_xy(POSCONTROL_VEL_XY_P, POSCONTROL_VEL_XY_I, POSCONTROL_VEL_XY_D, POSCONTROL_VEL_XY_IMAX, POSCONTROL_VEL_XY_FILT_HZ, POSCONTROL_VEL_XY_FILT_D_HZ, POSCONTROL_DT_50HZ), _pid_vel_xy(POSCONTROL_VEL_XY_P, POSCONTROL_VEL_XY_I, POSCONTROL_VEL_XY_D, 0.0f, POSCONTROL_VEL_XY_IMAX, POSCONTROL_VEL_XY_FILT_HZ, POSCONTROL_VEL_XY_FILT_D_HZ, POSCONTROL_DT_400HZ),
_dt(POSCONTROL_DT_400HZ), _dt(POSCONTROL_DT_400HZ),
_speed_down_cms(POSCONTROL_SPEED_DOWN), _speed_down_cms(POSCONTROL_SPEED_DOWN),
_speed_up_cms(POSCONTROL_SPEED_UP), _speed_up_cms(POSCONTROL_SPEED_UP),
@ -251,8 +308,6 @@ AC_PosControl::AC_PosControl(AP_AHRS_View& ahrs, const AP_InertialNav& inav,
_flags.reset_desired_vel_to_pos = true; _flags.reset_desired_vel_to_pos = true;
_flags.reset_accel_to_lean_xy = true; _flags.reset_accel_to_lean_xy = true;
_flags.reset_rate_to_accel_z = true; _flags.reset_rate_to_accel_z = true;
_flags.freeze_ff_z = true;
_flags.use_desvel_ff_z = true;
_limit.pos_up = true; _limit.pos_up = true;
_limit.pos_down = true; _limit.pos_down = true;
_limit.vel_up = true; _limit.vel_up = true;
@ -270,7 +325,10 @@ void AC_PosControl::set_dt(float delta_sec)
_dt = delta_sec; _dt = delta_sec;
// update PID controller dt // update PID controller dt
_p_pos_z.set_dt(_dt);
_pid_vel_z.set_dt(_dt);
_pid_accel_z.set_dt(_dt); _pid_accel_z.set_dt(_dt);
_p_pos_xy.set_dt(_dt);
_pid_vel_xy.set_dt(_dt); _pid_vel_xy.set_dt(_dt);
// update rate z-axis velocity error and accel error filters // update rate z-axis velocity error and accel error filters
@ -318,20 +376,14 @@ void AC_PosControl::set_max_accel_z(float accel_cmss)
void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt) void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt)
{ {
float alt_change = alt_cm - _pos_target.z; float alt_change = alt_cm - _pos_target.z;
_vel_desired.z = 0.0f;
// do not use z-axis desired velocity feed forward
_flags.use_desvel_ff_z = false;
// adjust desired alt if motors have not hit their limits // adjust desired alt if motors have not hit their limits
if ((alt_change < 0 && !_motors.limit.throttle_lower) || (alt_change > 0 && !_motors.limit.throttle_upper)) { if ((alt_change < 0 && !_motors.limit.throttle_lower) || (alt_change > 0 && !_motors.limit.throttle_upper)) {
if (!is_zero(dt)) { if (!is_zero(dt)) {
float climb_rate_cms = constrain_float(alt_change / dt, _speed_down_cms, _speed_up_cms); float climb_rate_cms = constrain_float(alt_change / dt, _speed_down_cms, _speed_up_cms);
_pos_target.z += climb_rate_cms * dt; _pos_target.z += climb_rate_cms * dt;
_vel_desired.z = climb_rate_cms; // recorded for reporting purposes
} }
} else {
// recorded for reporting purposes
_vel_desired.z = 0.0f;
} }
// do not let target get too far from current altitude // do not let target get too far from current altitude
@ -353,8 +405,7 @@ void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float d
// do not use z-axis desired velocity feed forward // do not use z-axis desired velocity feed forward
// vel_desired set to desired climb rate for reporting and land-detector // vel_desired set to desired climb rate for reporting and land-detector
_flags.use_desvel_ff_z = false; _vel_desired.z = 0.0f;
_vel_desired.z = climb_rate_cms;
} }
/// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward /// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward
@ -377,14 +428,23 @@ void AC_PosControl::set_alt_target_from_climb_rate_ff(float climb_rate_cms, floa
// jerk_z is calculated to reach full acceleration in 1000ms. // jerk_z is calculated to reach full acceleration in 1000ms.
float jerk_z = accel_z_cms * POSCONTROL_JERK_RATIO; float jerk_z = accel_z_cms * POSCONTROL_JERK_RATIO;
float accel_z_max = MIN(accel_z_cms, safe_sqrt(2.0f * fabsf(_vel_desired.z - climb_rate_cms) * jerk_z)); float accel_z_max = MIN(accel_z_cms, safe_sqrt(2.0f * fabsf(climb_rate_cms - _vel_desired.z) * jerk_z));
// jerk limit the acceleration increase
_accel_last_z_cms += jerk_z * dt; _accel_last_z_cms += jerk_z * dt;
_accel_last_z_cms = MIN(accel_z_max, _accel_last_z_cms); // jerk limit the decrease as zero error is approached
_accel_last_z_cms = MIN(_accel_last_z_cms, accel_z_max);
// remove overshoot during last time step
_accel_last_z_cms = MIN(_accel_last_z_cms, fabsf(climb_rate_cms- _vel_desired.z) / dt);
if (is_positive(climb_rate_cms- _vel_desired.z)){
_accel_desired.z = _accel_last_z_cms;
} else {
_accel_desired.z = -_accel_last_z_cms;
}
float vel_change_limit = _accel_last_z_cms * dt; float vel_change_limit = _accel_last_z_cms * dt;
_vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z - vel_change_limit, _vel_desired.z + vel_change_limit); _vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z - vel_change_limit, _vel_desired.z + vel_change_limit);
_flags.use_desvel_ff_z = true;
// adjust desired alt if motors have not hit their limits // adjust desired alt if motors have not hit their limits
// To-Do: add check of _limit.pos_down? // To-Do: add check of _limit.pos_down?
@ -405,11 +465,6 @@ void AC_PosControl::add_takeoff_climb_rate(float climb_rate_cms, float dt)
void AC_PosControl::shift_alt_target(float z_cm) void AC_PosControl::shift_alt_target(float z_cm)
{ {
_pos_target.z += z_cm; _pos_target.z += z_cm;
// freeze feedforward to avoid jump
if (!is_zero(z_cm)) {
freeze_ff_z();
}
} }
/// relax_alt_hold_controllers - set all desired and targets to measured /// relax_alt_hold_controllers - set all desired and targets to measured
@ -417,9 +472,7 @@ void AC_PosControl::relax_alt_hold_controllers(float throttle_setting)
{ {
_pos_target.z = _inav.get_altitude(); _pos_target.z = _inav.get_altitude();
_vel_desired.z = 0.0f; _vel_desired.z = 0.0f;
_flags.use_desvel_ff_z = false;
_vel_target.z = _inav.get_velocity_z(); _vel_target.z = _inav.get_velocity_z();
_vel_last.z = _inav.get_velocity_z();
_accel_desired.z = 0.0f; _accel_desired.z = 0.0f;
_accel_last_z_cms = 0.0f; _accel_last_z_cms = 0.0f;
_flags.reset_rate_to_accel_z = true; _flags.reset_rate_to_accel_z = true;
@ -454,11 +507,8 @@ void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const
// if position controller is active add current velocity error to avoid sudden jump in acceleration // if position controller is active add current velocity error to avoid sudden jump in acceleration
if (is_active_z()) { if (is_active_z()) {
curr_vel_z += _vel_error.z;
if (_flags.use_desvel_ff_z) {
curr_vel_z -= _vel_desired.z; curr_vel_z -= _vel_desired.z;
} }
}
// avoid divide by zero by using current position if kP is very low or acceleration is zero // avoid divide by zero by using current position if kP is very low or acceleration is zero
if (_p_pos_z.kP() <= 0.0f || _accel_z_cms <= 0.0f) { if (_p_pos_z.kP() <= 0.0f || _accel_z_cms <= 0.0f) {
@ -490,9 +540,6 @@ void AC_PosControl::init_takeoff()
_pos_target.z = curr_pos.z; _pos_target.z = curr_pos.z;
// freeze feedforward to avoid jump
freeze_ff_z();
// shift difference between last motor out and hover throttle into accelerometer I // shift difference between last motor out and hover throttle into accelerometer I
_pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f); _pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f);
@ -546,125 +593,67 @@ void AC_PosControl::calc_leash_length_z()
// vel_up_max, vel_down_max should have already been set before calling this method // vel_up_max, vel_down_max should have already been set before calling this method
void AC_PosControl::run_z_controller() void AC_PosControl::run_z_controller()
{ {
// Position Controller
float curr_alt = _inav.get_altitude(); float curr_alt = _inav.get_altitude();
// define maximum position error and maximum first and second differential limits
// clear position limit flags _p_pos_z.set_limits_error(-fabsf(_leash_down_z), _leash_up_z, -fabsf(_speed_down_cms), _speed_up_cms);
_limit.pos_up = false; // calculate the target velocity correction
_limit.pos_down = false; _vel_target.z = _p_pos_z.update_all(_pos_target.z, curr_alt, _limit.pos_down, _limit.pos_up);
// calculate altitude error
_pos_error.z = _pos_target.z - curr_alt;
// do not let target altitude get too far from current altitude
if (_pos_error.z > _leash_up_z) {
_pos_target.z = curr_alt + _leash_up_z;
_pos_error.z = _leash_up_z;
_limit.pos_up = true;
}
if (_pos_error.z < -_leash_down_z) {
_pos_target.z = curr_alt - _leash_down_z;
_pos_error.z = -_leash_down_z;
_limit.pos_down = true;
}
// calculate _vel_target.z using from _pos_error.z using sqrt controller
_vel_target.z = sqrt_controller(_pos_error.z, _p_pos_z.kP(), _accel_z_cms, _dt);
// check speed limits
// To-Do: check these speed limits here or in the pos->rate controller
_limit.vel_up = false;
_limit.vel_down = false;
if (_vel_target.z < _speed_down_cms) {
_vel_target.z = _speed_down_cms;
_limit.vel_down = true;
}
if (_vel_target.z > _speed_up_cms) {
_vel_target.z = _speed_up_cms;
_limit.vel_up = true;
}
// add feed forward component // add feed forward component
if (_flags.use_desvel_ff_z) { _vel_target.z += constrain_float(_vel_desired.z, -fabsf(_speed_down_cms), _speed_up_cms);
_vel_target.z += _vel_desired.z;
}
// the following section calculates acceleration required to achieve the velocity target // Velocity Controller
const Vector3f& curr_vel = _inav.get_velocity(); const Vector3f& curr_vel = _inav.get_velocity();
_accel_target.z = _pid_vel_z.update_all(_vel_target.z, curr_vel.z);
// TODO: remove velocity derivative calculation
// reset last velocity target to current target
if (_flags.reset_rate_to_accel_z) {
_vel_last.z = _vel_target.z;
}
// feed forward desired acceleration calculation
if (_dt > 0.0f) {
if (!_flags.freeze_ff_z) {
_accel_desired.z = (_vel_target.z - _vel_last.z) / _dt;
} else {
// stop the feed forward being calculated during a known discontinuity
_flags.freeze_ff_z = false;
}
} else {
_accel_desired.z = 0.0f;
}
// store this iteration's velocities for the next iteration
_vel_last.z = _vel_target.z;
// reset velocity error and filter if this controller has just been engaged
if (_flags.reset_rate_to_accel_z) {
// Reset Filter
_vel_error.z = 0;
_vel_error_filter.reset(0);
_flags.reset_rate_to_accel_z = false;
} else {
// calculate rate error and filter with cut off frequency of 2 Hz
_vel_error.z = _vel_error_filter.apply(_vel_target.z - curr_vel.z, _dt);
}
_accel_target.z = _p_vel_z.get_p(_vel_error.z);
_accel_target.z += _accel_desired.z; _accel_target.z += _accel_desired.z;
// Acceleration Controller
// Calculate Earth Frame Z acceleration // Calculate Earth Frame Z acceleration
const float z_accel_meas = get_z_accel_cmss(); const float z_accel_meas = get_z_accel_cmss();
// ensure imax is always large enough to overpower hover throttle // ensure imax is always large enough to overpower hover throttle
if (_motors.get_throttle_hover() * 1000.0f > _pid_accel_z.imax()) { if (_motors.get_throttle_hover() * 1000.0f > _pid_accel_z.imax()) {
_pid_accel_z.imax(_motors.get_throttle_hover() * 1000.0f); _pid_accel_z.imax(_motors.get_throttle_hover() * 1000.0f);
} }
float thr_out; float thr_out;
if (_vibe_comp_enabled) { if (_vibe_comp_enabled) {
_flags.freeze_ff_z = true; thr_out = get_throttle_with_vibration_override();
} else {
thr_out = _pid_accel_z.update_all(_accel_target.z, z_accel_meas, (_motors.limit.throttle_lower || _motors.limit.throttle_upper)) * 0.001f;
thr_out += _pid_accel_z.get_ff() * 0.001f;
}
thr_out += _motors.get_throttle_hover();
// Actuator commands
// send throttle to attitude controller with angle boost
_attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ);
// Check for vertical controller health
// _speed_down_cms is checked to be non-zero when set
float error_ratio = _vel_error.z/_speed_down_cms;
_vel_z_control_ratio += _dt*0.1f*(0.5-error_ratio);
_vel_z_control_ratio = constrain_float(_vel_z_control_ratio, 0.0f, 2.0f);
}
// get throttle using vibration resistant calculation (uses feed forward with manually calculated gain)
float AC_PosControl::get_throttle_with_vibration_override()
{
_accel_desired.z = 0.0f; _accel_desired.z = 0.0f;
const float thr_per_accelz_cmss = _motors.get_throttle_hover() / (GRAVITY_MSS * 100.0f); const float thr_per_accelz_cmss = _motors.get_throttle_hover() / (GRAVITY_MSS * 100.0f);
// during vibration compensation use feed forward with manually calculated gain // during vibration compensation use feed forward with manually calculated gain
// ToDo: clear pid_info P, I and D terms for logging // ToDo: clear pid_info P, I and D terms for logging
if (!(_motors.limit.throttle_lower || _motors.limit.throttle_upper) || ((is_positive(_pid_accel_z.get_i()) && is_negative(_vel_error.z)) || (is_negative(_pid_accel_z.get_i()) && is_positive(_vel_error.z)))) { if (!(_motors.limit.throttle_lower || _motors.limit.throttle_upper) || ((is_positive(_pid_accel_z.get_i()) && is_negative(_vel_error.z)) || (is_negative(_pid_accel_z.get_i()) && is_positive(_vel_error.z)))) {
_pid_accel_z.set_integrator(_pid_accel_z.get_i() + _dt * thr_per_accelz_cmss * 1000.0f * _vel_error.z * _p_vel_z.kP() * POSCONTROL_VIBE_COMP_I_GAIN); _pid_accel_z.set_integrator(_pid_accel_z.get_i() + _dt * thr_per_accelz_cmss * 1000.0f * _vel_error.z * _pid_vel_z.kP() * POSCONTROL_VIBE_COMP_I_GAIN);
} }
thr_out = POSCONTROL_VIBE_COMP_P_GAIN * thr_per_accelz_cmss * _accel_target.z + _pid_accel_z.get_i() * 0.001f; return POSCONTROL_VIBE_COMP_P_GAIN * thr_per_accelz_cmss * _accel_target.z + _pid_accel_z.get_i() * 0.001f;
} else {
thr_out = _pid_accel_z.update_all(_accel_target.z, z_accel_meas, (_motors.limit.throttle_lower || _motors.limit.throttle_upper)) * 0.001f;
}
thr_out += _motors.get_throttle_hover();
// send throttle to attitude controller with angle boost
_attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ);
// _speed_down_cms is checked to be non-zero when set
float error_ratio = _vel_error.z/_speed_down_cms;
_vel_z_control_ratio += _dt*0.1f*(0.5-error_ratio);
_vel_z_control_ratio = constrain_float(_vel_z_control_ratio, 0.0f, 2.0f);
} }
/// ///
/// lateral position controller /// lateral position controller
/// ///
@ -698,8 +687,6 @@ void AC_PosControl::set_max_speed_xy(float speed_cms)
void AC_PosControl::set_pos_target(const Vector3f& position) void AC_PosControl::set_pos_target(const Vector3f& position)
{ {
_pos_target = position; _pos_target = position;
_flags.use_desvel_ff_z = false;
_vel_desired.z = 0.0f; _vel_desired.z = 0.0f;
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run // initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run
// To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle // To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle
@ -707,6 +694,14 @@ void AC_PosControl::set_pos_target(const Vector3f& position)
//_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); //_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
} }
/// set position, velocity and acceleration targets
void AC_PosControl::set_pos_vel_accel_target(const Vector3f& pos, const Vector3f& vel, const Vector3f& accel)
{
_pos_target = pos;
_vel_desired = vel;
_accel_desired = accel;
}
/// set_xy_target in cm from home /// set_xy_target in cm from home
void AC_PosControl::set_xy_target(float x, float y) void AC_PosControl::set_xy_target(float x, float y)
{ {
@ -1007,36 +1002,20 @@ void AC_PosControl::run_xy_controller(float dt)
float ekfGndSpdLimit, ekfNavVelGainScaler; float ekfGndSpdLimit, ekfNavVelGainScaler;
AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler); AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
Vector3f curr_pos = _inav.get_position(); // Position Controller
float kP = ekfNavVelGainScaler * _p_pos_xy.kP(); // scale gains to compensate for noisy optical flow measurement in the EKF
// avoid divide by zero const Vector3f &curr_pos = _inav.get_position();
if (kP <= 0.0f) { Vector2f vel_target = _p_pos_xy.update_all(_pos_target.x, _pos_target.y, curr_pos, _leash, _accel_cms);
_vel_target.x = 0.0f;
_vel_target.y = 0.0f;
} else {
// calculate distance error
_pos_error.x = _pos_target.x - curr_pos.x;
_pos_error.y = _pos_target.y - curr_pos.y;
// Constrain _pos_error and target position
// Constrain the maximum length of _vel_target to the maximum position correction velocity
// TODO: replace the leash length with a user definable maximum position correction
if (limit_vector_length(_pos_error.x, _pos_error.y, _leash)) {
_pos_target.x = curr_pos.x + _pos_error.x;
_pos_target.y = curr_pos.y + _pos_error.y;
}
_vel_target = sqrt_controller_3D(_pos_error, kP, _accel_cms);
}
// add velocity feed-forward // add velocity feed-forward
vel_target *= ekfNavVelGainScaler;
_vel_target.x = vel_target.x;
_vel_target.y = vel_target.y;
// acceleration to correct for velocity error and scale PID output to compensate for optical flow measurement induced EKF noise
_vel_target.x += _vel_desired.x; _vel_target.x += _vel_desired.x;
_vel_target.y += _vel_desired.y; _vel_target.y += _vel_desired.y;
// the following section converts desired velocities in lat/lon directions to accelerations in lat/lon frame // Velocity Controller
Vector2f accel_target, vel_xy_p, vel_xy_i, vel_xy_d;
// check if vehicle velocity is being overridden // check if vehicle velocity is being overridden
if (_flags.vehicle_horiz_vel_override) { if (_flags.vehicle_horiz_vel_override) {
@ -1045,36 +1024,13 @@ void AC_PosControl::run_xy_controller(float dt)
_vehicle_horiz_vel.x = _inav.get_velocity().x; _vehicle_horiz_vel.x = _inav.get_velocity().x;
_vehicle_horiz_vel.y = _inav.get_velocity().y; _vehicle_horiz_vel.y = _inav.get_velocity().y;
} }
Vector2f accel_target = _pid_vel_xy.update_all(Vector2f(_vel_target.x, _vel_target.y), _vehicle_horiz_vel, _limit.accel_xy);
// calculate velocity error
_vel_error.x = _vel_target.x - _vehicle_horiz_vel.x;
_vel_error.y = _vel_target.y - _vehicle_horiz_vel.y;
// TODO: constrain velocity error and velocity target
// call pi controller
_pid_vel_xy.set_input(_vel_error);
// get p
vel_xy_p = _pid_vel_xy.get_p();
// update i term if we have not hit the accel or throttle limits OR the i term will reduce
// TODO: move limit handling into the PI and PID controller
if (!_limit.accel_xy && !_motors.limit.throttle_upper) {
vel_xy_i = _pid_vel_xy.get_i();
} else {
vel_xy_i = _pid_vel_xy.get_i_shrink();
}
// get d
vel_xy_d = _pid_vel_xy.get_d();
// acceleration to correct for velocity error and scale PID output to compensate for optical flow measurement induced EKF noise // acceleration to correct for velocity error and scale PID output to compensate for optical flow measurement induced EKF noise
accel_target.x = (vel_xy_p.x + vel_xy_i.x + vel_xy_d.x) * ekfNavVelGainScaler; accel_target *= ekfNavVelGainScaler;
accel_target.y = (vel_xy_p.y + vel_xy_i.y + vel_xy_d.y) * ekfNavVelGainScaler;
// reset accel to current desired acceleration // reset accel to current desired acceleration
if (_flags.reset_accel_to_lean_xy) { if (_flags.reset_accel_to_lean_xy) {
_accel_target_filter.reset(Vector2f(accel_target.x, accel_target.y)); _accel_target_filter.reset(accel_target);
_flags.reset_accel_to_lean_xy = false; _flags.reset_accel_to_lean_xy = false;
} }
@ -1090,7 +1046,7 @@ void AC_PosControl::run_xy_controller(float dt)
_accel_target.x += _accel_desired.x; _accel_target.x += _accel_desired.x;
_accel_target.y += _accel_desired.y; _accel_target.y += _accel_desired.y;
// the following section converts desired accelerations provided in lat/lon frame to roll/pitch angles // Acceleration Controller
// limit acceleration using maximum lean angles // limit acceleration using maximum lean angles
float angle_max = MIN(_attitude_control.get_althold_lean_angle_max(), get_lean_angle_max_cd()); float angle_max = MIN(_attitude_control.get_althold_lean_angle_max(), get_lean_angle_max_cd());
@ -1204,24 +1160,18 @@ bool AC_PosControl::pre_arm_checks(const char *param_prefix,
char *failure_msg, char *failure_msg,
const uint8_t failure_msg_len) const uint8_t failure_msg_len)
{ {
// validate AC_P members: if (!is_positive(get_pos_xy_p().kP())) {
const struct { hal.util->snprintf(failure_msg, failure_msg_len, "%s_POSXY_P must be > 0", param_prefix);
const char *pid_name;
AC_P &p;
} ps[] = {
{ "POSXY", get_pos_xy_p() },
{ "POSZ", get_pos_z_p() },
{ "VELZ", get_vel_z_p() },
};
for (uint8_t i=0; i<ARRAY_SIZE(ps); i++) {
// all AC_P's must have a positive P value:
if (!is_positive(ps[i].p.kP())) {
hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_P must be > 0", param_prefix, ps[i].pid_name);
return false; return false;
} }
if (!is_positive(get_pos_z_p().kP())) {
hal.util->snprintf(failure_msg, failure_msg_len, "%s_POSZ_P must be > 0", param_prefix);
return false;
}
if (!is_positive(get_vel_z_pid().kP())) {
hal.util->snprintf(failure_msg, failure_msg_len, "%s_VELZ_P must be > 0", param_prefix);
return false;
} }
// z-axis acceleration control PID doesn't use FF, so P and I must be positive
if (!is_positive(get_accel_z_pid().kP())) { if (!is_positive(get_accel_z_pid().kP())) {
hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_P must be > 0", param_prefix); hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_P must be > 0", param_prefix);
return false; return false;

View File

@ -5,7 +5,10 @@
#include <AP_Math/AP_Math.h> #include <AP_Math/AP_Math.h>
#include <AC_PID/AC_P.h> // P library #include <AC_PID/AC_P.h> // P library
#include <AC_PID/AC_PID.h> // PID library #include <AC_PID/AC_PID.h> // PID library
#include <AC_PID/AC_P_1D.h> // P library (1-axis)
#include <AC_PID/AC_P_2D.h> // P library (2-axis)
#include <AC_PID/AC_PI_2D.h> // PI library (2-axis) #include <AC_PID/AC_PI_2D.h> // PI library (2-axis)
#include <AC_PID/AC_PID_Basic.h> // PID library (1-axis)
#include <AC_PID/AC_PID_2D.h> // PID library (2-axis) #include <AC_PID/AC_PID_2D.h> // PID library (2-axis)
#include <AP_InertialNav/AP_InertialNav.h> // Inertial Navigation library #include <AP_InertialNav/AP_InertialNav.h> // Inertial Navigation library
#include "AC_AttitudeControl.h" // Attitude control library #include "AC_AttitudeControl.h" // Attitude control library
@ -151,9 +154,6 @@ public:
float get_leash_down_z() const { return _leash_down_z; } float get_leash_down_z() const { return _leash_down_z; }
float get_leash_up_z() const { return _leash_up_z; } float get_leash_up_z() const { return _leash_up_z; }
/// freeze_ff_z - used to stop the feed forward being calculated during a known discontinuity
void freeze_ff_z() { _flags.freeze_ff_z = true; }
/// ///
/// xy position controller /// xy position controller
/// ///
@ -200,6 +200,9 @@ public:
/// set_pos_target in cm from home /// set_pos_target in cm from home
void set_pos_target(const Vector3f& position); void set_pos_target(const Vector3f& position);
/// set position, velocity and acceleration targets
void set_pos_vel_accel_target(const Vector3f& pos, const Vector3f& vel, const Vector3f& accel);
/// set_xy_target in cm from home /// set_xy_target in cm from home
void set_xy_target(float x, float y); void set_xy_target(float x, float y);
@ -212,9 +215,6 @@ public:
/// set_desired_velocity_z - sets desired velocity in cm/s in z axis /// set_desired_velocity_z - sets desired velocity in cm/s in z axis
void set_desired_velocity_z(float vel_z_cms) {_vel_desired.z = vel_z_cms;} void set_desired_velocity_z(float vel_z_cms) {_vel_desired.z = vel_z_cms;}
// clear desired velocity feed-forward in z axis
void clear_desired_velocity_ff_z() { _flags.use_desvel_ff_z = false; }
// set desired acceleration in cm/s in xy axis // set desired acceleration in cm/s in xy axis
void set_desired_accel_xy(float accel_lat_cms, float accel_lon_cms) { _accel_desired.x = accel_lat_cms; _accel_desired.y = accel_lon_cms; } void set_desired_accel_xy(float accel_lat_cms, float accel_lon_cms) { _accel_desired.x = accel_lat_cms; _accel_desired.y = accel_lon_cms; }
@ -277,11 +277,11 @@ public:
float get_leash_xy() const { return _leash; } float get_leash_xy() const { return _leash; }
/// get pid controllers /// get pid controllers
AC_P& get_pos_z_p() { return _p_pos_z; } AC_P_2D& get_pos_xy_p() { return _p_pos_xy; }
AC_P& get_vel_z_p() { return _p_vel_z; } AC_P_1D& get_pos_z_p() { return _p_pos_z; }
AC_PID& get_accel_z_pid() { return _pid_accel_z; }
AC_P& get_pos_xy_p() { return _p_pos_xy; }
AC_PID_2D& get_vel_xy_pid() { return _pid_vel_xy; } AC_PID_2D& get_vel_xy_pid() { return _pid_vel_xy; }
AC_PID_Basic& get_vel_z_pid() { return _pid_vel_z; }
AC_PID& get_accel_z_pid() { return _pid_accel_z; }
/// accessors for reporting /// accessors for reporting
const Vector3f& get_vel_target() const { return _vel_target; } const Vector3f& get_vel_target() const { return _vel_target; }
@ -317,18 +317,16 @@ protected:
uint16_t reset_desired_vel_to_pos : 1; // 1 if we should reset the rate_to_accel_xy step uint16_t reset_desired_vel_to_pos : 1; // 1 if we should reset the rate_to_accel_xy step
uint16_t reset_accel_to_lean_xy : 1; // 1 if we should reset the accel to lean angle step uint16_t reset_accel_to_lean_xy : 1; // 1 if we should reset the accel to lean angle step
uint16_t reset_rate_to_accel_z : 1; // 1 if we should reset the rate_to_accel_z step uint16_t reset_rate_to_accel_z : 1; // 1 if we should reset the rate_to_accel_z step
uint16_t freeze_ff_z : 1; // 1 used to freeze velocity to accel feed forward for one iteration
uint16_t use_desvel_ff_z : 1; // 1 to use z-axis desired velocity as feed forward into velocity step
uint16_t vehicle_horiz_vel_override : 1; // 1 if we should use _vehicle_horiz_vel as our velocity process variable for one timestep uint16_t vehicle_horiz_vel_override : 1; // 1 if we should use _vehicle_horiz_vel as our velocity process variable for one timestep
} _flags; } _flags;
// limit flags structure // limit flags structure
struct poscontrol_limit_flags { struct poscontrol_limit_flags {
uint8_t pos_up : 1; // 1 if we have hit the vertical position leash limit while going up bool pos_up; // true if we have hit the vertical position leash limit while going up
uint8_t pos_down : 1; // 1 if we have hit the vertical position leash limit while going down bool pos_down; // true if we have hit the vertical position leash limit while going down
uint8_t vel_up : 1; // 1 if we have hit the vertical velocity limit going up bool vel_up; // true if we have hit the vertical velocity limit going up
uint8_t vel_down : 1; // 1 if we have hit the vertical velocity limit going down bool vel_down; // true if we have hit the vertical velocity limit going down
uint8_t accel_xy : 1; // 1 if we have hit the horizontal accel limit bool accel_xy; // true if we have hit the horizontal accel limit
} _limit; } _limit;
/// ///
@ -342,6 +340,9 @@ protected:
// init_takeoff // init_takeoff
void run_z_controller(); void run_z_controller();
// get throttle using vibration resistant calculation (uses feed forward with manually calculated gain)
float get_throttle_with_vibration_override();
// get earth-frame Z-axis acceleration with gravity removed in cm/s/s with +ve being up // get earth-frame Z-axis acceleration with gravity removed in cm/s/s with +ve being up
float get_z_accel_cmss() const { return -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; } float get_z_accel_cmss() const { return -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; }
@ -380,11 +381,11 @@ protected:
// parameters // parameters
AP_Float _accel_xy_filt_hz; // XY acceleration filter cutoff frequency AP_Float _accel_xy_filt_hz; // XY acceleration filter cutoff frequency
AP_Float _lean_angle_max; // Maximum autopilot commanded angle (in degrees). Set to zero for Angle Max AP_Float _lean_angle_max; // Maximum autopilot commanded angle (in degrees). Set to zero for Angle Max
AC_P _p_pos_z; AC_P_2D _p_pos_xy; // XY axis position controller to convert distance error to desired velocity
AC_P _p_vel_z; AC_P_1D _p_pos_z; // Z axis position controller to convert altitude error to desired climb rate
AC_PID _pid_accel_z; AC_PID_2D _pid_vel_xy; // XY axis velocity controller to convert velocity error to desired acceleration
AC_P _p_pos_xy; AC_PID_Basic _pid_vel_z; // Z axis velocity controller to convert climb rate error to desired acceleration
AC_PID_2D _pid_vel_xy; AC_PID _pid_accel_z; // Z axis acceleration controller to convert desired acceleration to throttle output
// internal variables // internal variables
float _dt; // time difference (in seconds) between calls from the main program float _dt; // time difference (in seconds) between calls from the main program
@ -410,7 +411,6 @@ protected:
Vector3f _vel_desired; // desired velocity in cm/s Vector3f _vel_desired; // desired velocity in cm/s
Vector3f _vel_target; // velocity target in cm/s calculated by pos_to_rate step Vector3f _vel_target; // velocity target in cm/s calculated by pos_to_rate step
Vector3f _vel_error; // error between desired and actual acceleration in cm/s Vector3f _vel_error; // error between desired and actual acceleration in cm/s
Vector3f _vel_last; // previous iterations velocity in cm/s
Vector3f _accel_desired; // desired acceleration in cm/s/s (feed forward) Vector3f _accel_desired; // desired acceleration in cm/s/s (feed forward)
Vector3f _accel_target; // acceleration target in cm/s/s Vector3f _accel_target; // acceleration target in cm/s/s
Vector3f _accel_error; // acceleration error in cm/s/s Vector3f _accel_error; // acceleration error in cm/s/s