AP_InertialSensor: automatically lower bus speed on mpu6k bad reads

This commit is contained in:
Andrew Tridgell 2013-10-29 17:42:35 +11:00
parent bdc40cc7df
commit b98bcbf715
2 changed files with 71 additions and 109 deletions

View File

@ -154,20 +154,7 @@ extern const AP_HAL::HAL& hal;
* RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
*/
const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532 / 16.4);
/* pch: I believe the accel and gyro indicies are correct
* but somone else should please confirm.
*
* jamesjb: Y and Z axes are flipped on the PX4FMU
*/
const uint8_t AP_InertialSensor_MPU6000::_gyro_data_index[3] = { 5, 4, 6 };
const uint8_t AP_InertialSensor_MPU6000::_accel_data_index[3] = { 1, 0, 2 };
const int8_t AP_InertialSensor_MPU6000::_gyro_data_sign[3] = { 1, 1, -1 };
const int8_t AP_InertialSensor_MPU6000::_accel_data_sign[3] = { 1, 1, -1 };
const uint8_t AP_InertialSensor_MPU6000::_temp_data_index = 3;
const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532f / 16.4f);
/*
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of
@ -180,7 +167,6 @@ const uint8_t AP_InertialSensor_MPU6000::_temp_data_index = 3;
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000() :
AP_InertialSensor(),
_drdy_pin(NULL),
_temp(0),
_initialised(false),
_mpu6000_product_id(AP_PRODUCT_ID_NONE)
{
@ -203,7 +189,7 @@ uint16_t AP_InertialSensor_MPU6000::_init_sensor( Sample_rate sample_rate )
uint8_t tries = 0;
do {
bool success = hardware_init(sample_rate);
bool success = _hardware_init(sample_rate);
if (success) {
hal.scheduler->delay(5+2);
if (!_spi_sem->take(100)) {
@ -230,6 +216,7 @@ uint16_t AP_InertialSensor_MPU6000::_init_sensor( Sample_rate sample_rate )
* _read_data_transaction requires the spi semaphore to be taken by
* its caller. */
_last_sample_time_micros = hal.scheduler->micros();
hal.scheduler->delay(10);
_read_data_transaction();
// start the timer process to read samples
@ -241,13 +228,6 @@ uint16_t AP_InertialSensor_MPU6000::_init_sensor( Sample_rate sample_rate )
return _mpu6000_product_id;
}
// accumulation in ISR - must be read with interrupts disabled
// the sum of the values since last read
static volatile int32_t _sum[7];
// how many values we've accumulated since last read
static volatile uint16_t _count;
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_MPU6000::wait_for_sample(uint16_t timeout_ms)
@ -267,10 +247,6 @@ bool AP_InertialSensor_MPU6000::wait_for_sample(uint16_t timeout_ms)
bool AP_InertialSensor_MPU6000::update( void )
{
int32_t sum[7];
float count_scale;
Vector3f accel_scale = _accel_scale.get();
// wait for at least 1 sample
if (!wait_for_sample(1000)) {
return false;
@ -278,44 +254,33 @@ bool AP_InertialSensor_MPU6000::update( void )
// disable timer procs for mininum time
hal.scheduler->suspend_timer_procs();
/** ATOMIC SECTION w/r/t TIMER PROCESS */
{
for (int i=0; i<7; i++) {
sum[i] = _sum[i];
_sum[i] = 0;
}
_num_samples = _count;
_count = 0;
}
_gyro = Vector3f(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z);
_accel = Vector3f(_accel_sum.x, _accel_sum.y, _accel_sum.z);
_num_samples = _sum_count;
_accel_sum.zero();
_gyro_sum.zero();
_sum_count = 0;
hal.scheduler->resume_timer_procs();
count_scale = 1.0f / _num_samples;
_gyro = Vector3f(_gyro_data_sign[0] * sum[_gyro_data_index[0]],
_gyro_data_sign[1] * sum[_gyro_data_index[1]],
_gyro_data_sign[2] * sum[_gyro_data_index[2]]);
_gyro.rotate(_board_orientation);
_gyro *= _gyro_scale * count_scale;
_gyro *= _gyro_scale / _num_samples;
_gyro -= _gyro_offset;
_accel = Vector3f(_accel_data_sign[0] * sum[_accel_data_index[0]],
_accel_data_sign[1] * sum[_accel_data_index[1]],
_accel_data_sign[2] * sum[_accel_data_index[2]]);
_accel.rotate(_board_orientation);
_accel *= count_scale * MPU6000_ACCEL_SCALE_1G;
_accel *= MPU6000_ACCEL_SCALE_1G / _num_samples;
Vector3f accel_scale = _accel_scale.get();
_accel.x *= accel_scale.x;
_accel.y *= accel_scale.y;
_accel.z *= accel_scale.z;
_accel -= _accel_offset;
_temp = _temp_to_celsius(sum[_temp_data_index] * count_scale);
if (_last_filter_hz != _mpu6000_filter) {
if (_spi_sem->take(10)) {
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
_set_filter_register(_mpu6000_filter, 0);
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
_error_count = 0;
_spi_sem->give();
}
}
@ -376,32 +341,41 @@ void AP_InertialSensor_MPU6000::_poll_data(void)
}
}
void AP_InertialSensor_MPU6000::_read_data_transaction() {
/* one resister address followed by seven 2-byte registers */
uint8_t tx[16];
uint8_t rx[16];
memset(tx,0,16);
tx[0] = MPUREG_INT_STATUS | 0x80;
rx[1] = 0x42;
if (_error_count > 4) {
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
}
_spi->transaction(tx, rx, 16);
if (rx[1] != (_drdy_pin==NULL?0:BIT_RAW_RDY_INT)) {
// possibly bad bus transaction
_error_count++;
_error_value = rx[1];
}
for (uint8_t i = 0; i < 7; i++) {
_sum[i] += (int16_t)(((uint16_t)rx[2*i+2] << 8) | rx[2*i+3]);
}
struct PACKED {
uint8_t cmd;
uint8_t int_status;
uint8_t v[14];
} rx, tx = { cmd : MPUREG_INT_STATUS | 0x80, };
_count++;
if (_count == 0) {
_spi->transaction((const uint8_t *)&tx, (uint8_t *)&rx, sizeof(rx));
uint8_t i;
for (i=0; i<14; i++) {
if (rx.v[i] != 0) break;
}
if (rx.int_status != (_drdy_pin==NULL?0:BIT_RAW_RDY_INT) || i != 14) {
// likely a bad bus transaction
if (++_error_count > 4) {
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
}
}
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
_accel_sum.x += int16_val(rx.v, 1);
_accel_sum.y += int16_val(rx.v, 0);
_accel_sum.z -= int16_val(rx.v, 2);
_gyro_sum.x += int16_val(rx.v, 5);
_gyro_sum.y += int16_val(rx.v, 4);
_gyro_sum.z -= int16_val(rx.v, 6);
_sum_count++;
if (_sum_count == 0) {
// rollover - v unlikely
memset((void*)_sum, 0, sizeof(_sum));
_accel_sum.zero();
_gyro_sum.zero();
}
}
@ -419,7 +393,7 @@ uint8_t AP_InertialSensor_MPU6000::_register_read( uint8_t reg )
return rx[1];
}
void AP_InertialSensor_MPU6000::register_write(uint8_t reg, uint8_t val)
void AP_InertialSensor_MPU6000::_register_write(uint8_t reg, uint8_t val)
{
uint8_t tx[2];
uint8_t rx[2];
@ -457,12 +431,12 @@ void AP_InertialSensor_MPU6000::_set_filter_register(uint8_t filter_hz, uint8_t
if (filter != 0) {
_last_filter_hz = filter_hz;
register_write(MPUREG_CONFIG, filter);
_register_write(MPUREG_CONFIG, filter);
}
}
bool AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate)
bool AP_InertialSensor_MPU6000::_hardware_init(Sample_rate sample_rate)
{
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore"));
@ -474,13 +448,13 @@ bool AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate)
// Chip reset
uint8_t tries;
for (tries = 0; tries<5; tries++) {
register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
hal.scheduler->delay(100);
// Wake up device and select GyroZ clock. Note that the
// MPU6000 starts up in sleep mode, and it can take some time
// for it to come out of sleep
register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
hal.scheduler->delay(5);
// check it has woken up
@ -497,11 +471,11 @@ bool AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate)
return false;
}
register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode
_register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode
hal.scheduler->delay(1);
// Disable I2C bus (recommended on datasheet)
register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
hal.scheduler->delay(1);
uint8_t default_filter;
@ -532,10 +506,10 @@ bool AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate)
// set sample rate to 200Hz, and use _sample_divider to give
// the requested rate to the application
register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_200HZ);
_register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_200HZ);
hal.scheduler->delay(1);
register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000º/s
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000º/s
hal.scheduler->delay(1);
// read the product ID rev c has 1/2 the sensitivity of rev d
@ -546,22 +520,25 @@ bool AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate)
(_mpu6000_product_id == MPU6000_REV_C4) || (_mpu6000_product_id == MPU6000_REV_C5)) {
// Accel scale 8g (4096 LSB/g)
// Rev C has different scaling than rev D
register_write(MPUREG_ACCEL_CONFIG,1<<3);
_register_write(MPUREG_ACCEL_CONFIG,1<<3);
} else {
// Accel scale 8g (4096 LSB/g)
register_write(MPUREG_ACCEL_CONFIG,2<<3);
_register_write(MPUREG_ACCEL_CONFIG,2<<3);
}
hal.scheduler->delay(1);
// configure interrupt to fire when new data arrives
register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
hal.scheduler->delay(1);
// clear interrupt on any read, and hold the data ready pin high
// until we clear the interrupt
register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
_register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
hal.scheduler->delay(1);
// read INT status to clear the initial bits
_register_read(MPUREG_INT_STATUS);
// now that we have initialised, we set the SPI bus speed to high
// (8MHz on APM2)
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
@ -571,12 +548,6 @@ bool AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate)
return true;
}
float AP_InertialSensor_MPU6000::_temp_to_celsius ( uint16_t regval )
{
/* TODO */
return 20.0;
}
// return the MPU6k gyro drift rate in radian/s/s
// note that this is much better than the oilpan gyros
float AP_InertialSensor_MPU6000::get_gyro_drift_rate(void)
@ -589,7 +560,7 @@ float AP_InertialSensor_MPU6000::get_gyro_drift_rate(void)
bool AP_InertialSensor_MPU6000::sample_available()
{
_poll_data();
return (_count >> _sample_shift) > 0;
return (_sum_count >> _sample_shift) > 0;
}

View File

@ -37,35 +37,21 @@ protected:
uint16_t _init_sensor( Sample_rate sample_rate );
private:
AP_HAL::DigitalSource *_drdy_pin;
void _read_data_transaction();
bool _data_ready();
void _poll_data(void);
AP_HAL::DigitalSource *_drdy_pin;
uint8_t _register_read( uint8_t reg );
bool _register_read_from_timerprocess( uint8_t reg, uint8_t *val );
void register_write( uint8_t reg, uint8_t val );
bool hardware_init(Sample_rate sample_rate);
void _register_write( uint8_t reg, uint8_t val );
bool _hardware_init(Sample_rate sample_rate);
AP_HAL::SPIDeviceDriver *_spi;
AP_HAL::Semaphore *_spi_sem;
uint16_t _num_samples;
float _temp;
float _temp_to_celsius( uint16_t );
static const float _gyro_scale;
static const uint8_t _gyro_data_index[3];
static const int8_t _gyro_data_sign[3];
static const uint8_t _accel_data_index[3];
static const int8_t _accel_data_sign[3];
static const uint8_t _temp_data_index;
uint32_t _last_sample_time_micros;
// ensure we can't initialise twice
@ -81,7 +67,12 @@ private:
void _set_filter_register(uint8_t filter_hz, uint8_t default_filter);
uint16_t _error_count;
uint8_t _error_value;
// accumulation in timer - must be read with timer disabled
// the sum of the values since last read
Vector3l _accel_sum;
Vector3l _gyro_sum;
volatile int16_t _sum_count;
public: