added nested group support and validation

This commit is contained in:
Andrew Tridgell 2012-02-12 18:22:57 +11:00
parent 30c76664ce
commit b6ee5ca982
2 changed files with 403 additions and 79 deletions

View File

@ -6,6 +6,9 @@
// your option) any later version. // your option) any later version.
// //
// total up and check overflow
// check size of group var_info
/// @file AP_Param.cpp /// @file AP_Param.cpp
/// @brief The AP variable store. /// @brief The AP variable store.
@ -14,11 +17,11 @@
#include <math.h> #include <math.h>
#include <string.h> #include <string.h>
#include <FastSerial.h>
// #define ENABLE_FASTSERIAL_DEBUG #define ENABLE_FASTSERIAL_DEBUG
#ifdef ENABLE_FASTSERIAL_DEBUG #ifdef ENABLE_FASTSERIAL_DEBUG
# include <FastSerial.h>
# define serialDebug(fmt, args...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__ , ##args); delay(0); } while(0) # define serialDebug(fmt, args...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__ , ##args); delay(0); } while(0)
#else #else
# define serialDebug(fmt, args...) # define serialDebug(fmt, args...)
@ -27,6 +30,10 @@
// Static member variables for AP_Param. // Static member variables for AP_Param.
// //
// max EEPROM write size. This is usually less than the physical
// size as only part of the EEPROM is reserved for parameters
uint16_t AP_Param::_eeprom_size;
// number of rows in the _var_info[] table // number of rows in the _var_info[] table
uint16_t AP_Param::_num_vars; uint16_t AP_Param::_num_vars;
@ -76,14 +83,94 @@ void AP_Param::erase_all(void)
write_sentinal(sizeof(struct EEPROM_header)); write_sentinal(sizeof(struct EEPROM_header));
} }
// validate a group info table
bool AP_Param::check_group_info(const struct AP_Param::GroupInfo *group_info,
uint16_t *total_size,
uint8_t group_shift)
{
uint8_t type;
for (uint8_t i=0;
(type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
if (type == AP_PARAM_GROUP) {
// a nested group
const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info);
if (group_shift + _group_level_shift >= _group_bits) {
// double nesting of groups is not allowed
return false;
}
if (ginfo == NULL ||
!check_group_info(ginfo, total_size, group_shift + _group_level_shift)) {
return false;
}
continue;
}
if (type == AP_PARAM_SPARE) {
// a placeholder for a removed entry
continue;
}
if (i >= (1<<_group_level_shift)) {
// passed limit on table size
return false;
}
uint8_t size = type_size((enum ap_var_type)type);
if (size == 0) {
// not a valid type
return false;
}
(*total_size) += size + sizeof(struct Param_header);
}
return true;
}
// validate the _var_info[] table
bool AP_Param::check_var_info(void)
{
uint16_t total_size = sizeof(struct EEPROM_header);
for (uint16_t i=0; i<_num_vars; i++) {
uint8_t type = pgm_read_byte(&_var_info[i].type);
if (type == AP_PARAM_GROUP) {
if (i == 0) {
// first element can't be a group, for first() call
return false;
}
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info);
if (group_info == NULL ||
!check_group_info(group_info, &total_size, 0)) {
return false;
}
} else {
uint8_t size = type_size((enum ap_var_type)type);
if (size == 0) {
// not a valid type - the top level list can't contain AP_PARAM_NONE
return false;
}
total_size += size + sizeof(struct Param_header);
}
}
if (total_size > _eeprom_size) {
serialDebug("total_size %u exceeds _eeprom_size %u",
total_size, _eeprom_size);
return false;
}
return true;
}
// setup the _var_info[] table // setup the _var_info[] table
bool AP_Param::setup(const AP_Param::Info *info, uint16_t num_vars) bool AP_Param::setup(const AP_Param::Info *info, uint16_t num_vars, uint16_t eeprom_size)
{ {
struct EEPROM_header hdr; struct EEPROM_header hdr;
_eeprom_size = eeprom_size;
_var_info = info; _var_info = info;
_num_vars = num_vars; _num_vars = num_vars;
if (!check_var_info()) {
return false;
}
serialDebug("setup %u vars", (unsigned)num_vars); serialDebug("setup %u vars", (unsigned)num_vars);
// check the header // check the header
@ -99,6 +186,48 @@ bool AP_Param::setup(const AP_Param::Info *info, uint16_t num_vars)
return true; return true;
} }
#define GROUP_OFFSET(base, i, shift) ((base)+(((uint16_t)i)<<(shift)))
// find the info structure given a header and a group_info table
// return the Info structure and a pointer to the variables storage
const struct AP_Param::Info *AP_Param::find_by_header_group(struct Param_header phdr, void **ptr,
uint8_t vindex,
const struct GroupInfo *group_info,
uint8_t group_base,
uint8_t group_shift)
{
uint8_t type;
for (uint8_t i=0;
(type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
if (type == AP_PARAM_GROUP) {
// a nested group
if (group_shift + _group_level_shift >= _group_bits) {
// too deeply nested - this should have been caught by
// setup() !
return NULL;
}
const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info);
const struct AP_Param::Info *ret = find_by_header_group(phdr, ptr, vindex, ginfo,
GROUP_OFFSET(group_base, i, group_shift),
group_shift + _group_level_shift);
if (ret != NULL) {
return ret;
}
continue;
}
if (type == AP_PARAM_SPARE) {
continue;
}
if (GROUP_OFFSET(group_base, i, group_shift) == phdr.group_element) {
// found a group element
*ptr = (void*)(pgm_read_pointer(&_var_info[vindex].ptr) + pgm_read_word(&group_info[i].offset));
return &_var_info[vindex];
}
}
return NULL;
}
// find the info structure given a header // find the info structure given a header
// return the Info structure and a pointer to the variables storage // return the Info structure and a pointer to the variables storage
const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr) const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr)
@ -117,44 +246,68 @@ const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr,
return &_var_info[i]; return &_var_info[i];
} }
// for groups we need to check each group element
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info);
for (uint8_t j=0; return find_by_header_group(phdr, ptr, i, group_info, 0, 0);
pgm_read_byte(&group_info[j].type) != AP_PARAM_NONE; }
j++) { return NULL;
if (j == phdr.group_element) { }
// found a group element
*ptr = (void*)(pgm_read_pointer(&_var_info[i].ptr) + pgm_read_word(&group_info[j].offset)); // find the info structure for a variable in a group
return &_var_info[i]; const struct AP_Param::Info *AP_Param::find_var_info_group(const struct GroupInfo *group_info,
uint8_t vindex,
uint8_t group_base,
uint8_t group_shift,
uint8_t *group_element,
const struct GroupInfo **group_ret)
{
uintptr_t base = pgm_read_pointer(&_var_info[vindex].ptr);
uint8_t type;
for (uint8_t i=0;
(type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info);
// a nested group
if (group_shift + _group_level_shift >= _group_bits) {
// too deeply nested - this should have been caught by
// setup() !
return NULL;
}
const struct AP_Param::Info *info;
info = find_var_info_group(ginfo, vindex,
GROUP_OFFSET(group_base, i, group_shift),
group_shift + _group_level_shift,
group_element,
group_ret);
if (info != NULL) {
return info;
}
} else if ((uintptr_t)this == base + pgm_read_pointer(&group_info[i].offset)) {
*group_element = GROUP_OFFSET(group_base, i, group_shift);
*group_ret = &group_info[i];
return &_var_info[vindex];
} }
} }
}
serialDebug("failed to find type=%u key=%u\n",
(unsigned)phdr.type,
(unsigned)phdr.key);
return NULL; return NULL;
} }
// find the info structure for a variable // find the info structure for a variable
const struct AP_Param::Info *AP_Param::find_var_info(uint8_t *group_element) const struct AP_Param::Info *AP_Param::find_var_info(uint8_t *group_element,
const struct GroupInfo **group_ret)
{ {
for (uint16_t i=0; i<_num_vars; i++) { for (uint16_t i=0; i<_num_vars; i++) {
uint8_t type = pgm_read_byte(&_var_info[i].type); uint8_t type = pgm_read_byte(&_var_info[i].type);
uintptr_t base = pgm_read_pointer(&_var_info[i].ptr); uintptr_t base = pgm_read_pointer(&_var_info[i].ptr);
if (type == AP_PARAM_GROUP) { if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info);
for (uint8_t j=0; const struct AP_Param::Info *info;
(type=pgm_read_byte(&group_info[j].type)) != AP_PARAM_NONE ; info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret);
j++) { if (info != NULL) {
if ((uintptr_t)this == base + pgm_read_pointer(&group_info[j].offset)) { return info;
if (group_element != NULL) {
*group_element = j;
}
return &_var_info[i];
}
} }
} else if (base == (uintptr_t)this) { } else if (base == (uintptr_t)this) {
*group_element = 0; *group_element = 0;
*group_ret = NULL;
return &_var_info[i]; return &_var_info[i];
} }
} }
@ -166,6 +319,7 @@ const uint8_t AP_Param::type_size(enum ap_var_type type)
{ {
switch (type) { switch (type) {
case AP_PARAM_NONE: case AP_PARAM_NONE:
case AP_PARAM_SPARE:
case AP_PARAM_GROUP: case AP_PARAM_GROUP:
return 0; return 0;
case AP_PARAM_INT8: case AP_PARAM_INT8:
@ -195,7 +349,7 @@ bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs)
{ {
struct Param_header phdr; struct Param_header phdr;
uint16_t ofs = sizeof(AP_Param::EEPROM_header); uint16_t ofs = sizeof(AP_Param::EEPROM_header);
while (ofs < k_EEPROM_size) { while (ofs < _eeprom_size) {
eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr)); eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr));
if (phdr.type == target->type && if (phdr.type == target->type &&
phdr.key == target->key && phdr.key == target->key &&
@ -208,9 +362,6 @@ bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs)
phdr.key == 0) { phdr.key == 0) {
// we've reached the sentinal // we've reached the sentinal
*pofs = ofs; *pofs = ofs;
serialDebug("failed to scan type=%u key=%u\n",
(unsigned)target->type,
(unsigned)target->key);
return false; return false;
} }
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr);
@ -227,26 +378,50 @@ bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs)
void AP_Param::copy_name(char *buffer, size_t buffer_size) void AP_Param::copy_name(char *buffer, size_t buffer_size)
{ {
uint8_t group_element; uint8_t group_element;
const struct AP_Param::Info *info = find_var_info(&group_element); const struct GroupInfo *ginfo;
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo);
if (info == NULL) { if (info == NULL) {
*buffer = 0; *buffer = 0;
serialDebug("no info found"); serialDebug("no info found");
return; return;
} }
strncpy_P(buffer, info->name, buffer_size); strncpy_P(buffer, info->name, buffer_size);
if (pgm_read_byte(&info->type) == AP_PARAM_GROUP) { if (ginfo != NULL) {
uint8_t len = strnlen(buffer, buffer_size); uint8_t len = strnlen(buffer, buffer_size);
if (len < buffer_size) { if (len < buffer_size) {
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&info->group_info); strncpy_P(&buffer[len], ginfo->name, buffer_size-len);
strncpy_P(&buffer[len], group_info->name, buffer_size-len);
} }
} }
} }
// Find a variable by name in a group
AP_Param *
AP_Param::find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype)
{
uint8_t type;
for (uint8_t i=0;
(type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info);
AP_Param *ap = find_group(name, vindex, ginfo, ptype);
if (ap != NULL) {
return ap;
}
} else if (strcasecmp_P(name, group_info[i].name) == 0) {
uintptr_t p = pgm_read_pointer(&_var_info[vindex].ptr);
*ptype = (enum ap_var_type)type;
return (AP_Param *)(p + pgm_read_pointer(&group_info[i].offset));
}
}
return NULL;
}
// Find a variable by name. // Find a variable by name.
// //
AP_Param * AP_Param *
AP_Param::find(const char *name) AP_Param::find(const char *name, enum ap_var_type *ptype)
{ {
for (uint16_t i=0; i<_num_vars; i++) { for (uint16_t i=0; i<_num_vars; i++) {
uint8_t type = pgm_read_byte(&_var_info[i].type); uint8_t type = pgm_read_byte(&_var_info[i].type);
@ -256,15 +431,9 @@ AP_Param::find(const char *name)
continue; continue;
} }
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info);
for (uint8_t j=0; return find_group(name + len, i, group_info, ptype);
(type=pgm_read_byte(&group_info[j].type)) != AP_PARAM_NONE ;
j++) {
if (strcasecmp_P(name+len, group_info[j].name) == 0) {
uintptr_t p = pgm_read_pointer(&_var_info[i].ptr);
return (AP_Param *)(p + pgm_read_pointer(&group_info[j].offset));
}
}
} else if (strcasecmp_P(name, _var_info[i].name) == 0) { } else if (strcasecmp_P(name, _var_info[i].name) == 0) {
*ptype = (enum ap_var_type)type;
return (AP_Param *)pgm_read_pointer(&_var_info[i].ptr); return (AP_Param *)pgm_read_pointer(&_var_info[i].ptr);
} }
} }
@ -276,7 +445,8 @@ AP_Param::find(const char *name)
bool AP_Param::save(void) bool AP_Param::save(void)
{ {
uint8_t group_element; uint8_t group_element;
const struct AP_Param::Info *info = find_var_info(&group_element); const struct GroupInfo *ginfo;
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo);
if (info == NULL) { if (info == NULL) {
// we don't have any info on how to store it // we don't have any info on how to store it
@ -286,9 +456,15 @@ bool AP_Param::save(void)
struct Param_header phdr; struct Param_header phdr;
// create the header we will use to store the variable // create the header we will use to store the variable
phdr.type = pgm_read_byte(&info->type); if (ginfo != NULL) {
phdr.type = pgm_read_byte(&ginfo->type);
phdr.key = pgm_read_word(&info->key); phdr.key = pgm_read_word(&info->key);
phdr.group_element = group_element; phdr.group_element = group_element;
} else {
phdr.type = pgm_read_byte(&info->type);
phdr.key = pgm_read_word(&info->key);
phdr.group_element = 0;
}
// scan EEPROM to find the right location // scan EEPROM to find the right location
uint16_t ofs; uint16_t ofs;
@ -313,7 +489,8 @@ bool AP_Param::save(void)
bool AP_Param::load(void) bool AP_Param::load(void)
{ {
uint8_t group_element; uint8_t group_element;
const struct AP_Param::Info *info = find_var_info(&group_element); const struct GroupInfo *ginfo;
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo);
if (info == NULL) { if (info == NULL) {
// we don't have any info on how to load it // we don't have any info on how to load it
return false; return false;
@ -322,9 +499,15 @@ bool AP_Param::load(void)
struct Param_header phdr; struct Param_header phdr;
// create the header we will use to match the variable // create the header we will use to match the variable
phdr.type = pgm_read_byte(&info->type); if (ginfo != NULL) {
phdr.type = pgm_read_byte(&ginfo->type);
phdr.key = pgm_read_word(&info->key); phdr.key = pgm_read_word(&info->key);
phdr.group_element = group_element; phdr.group_element = group_element;
} else {
phdr.type = pgm_read_byte(&info->type);
phdr.key = pgm_read_word(&info->key);
phdr.group_element = 0;
}
// scan EEPROM to find the right location // scan EEPROM to find the right location
uint16_t ofs; uint16_t ofs;
@ -343,7 +526,7 @@ bool AP_Param::load_all(void)
{ {
struct Param_header phdr; struct Param_header phdr;
uint16_t ofs = sizeof(AP_Param::EEPROM_header); uint16_t ofs = sizeof(AP_Param::EEPROM_header);
while (ofs < k_EEPROM_size) { while (ofs < _eeprom_size) {
eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr)); eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr));
if (phdr.type == AP_PARAM_NONE && if (phdr.type == AP_PARAM_NONE &&
phdr.key == 0) { phdr.key == 0) {
@ -366,3 +549,94 @@ bool AP_Param::load_all(void)
serialDebug("no sentinal in load_all"); serialDebug("no sentinal in load_all");
return false; return false;
} }
// return the first variable in _var_info
AP_Param *AP_Param::first(uint32_t *token, enum ap_var_type *ptype)
{
*token = 0;
if (_num_vars == 0) {
return NULL;
}
*ptype = (enum ap_var_type)pgm_read_byte(&_var_info[0].type);
return (AP_Param *)(pgm_read_pointer(&_var_info[0].ptr));
}
/// Returns the next variable in a group, recursing into groups
/// as needed
AP_Param *AP_Param::next_group(uint8_t vindex, const struct GroupInfo *group_info,
bool *found_current,
uint8_t group_base,
uint8_t group_shift,
uint32_t *token,
enum ap_var_type *ptype)
{
uint8_t type;
for (uint8_t i=0;
(type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
if (type == AP_PARAM_GROUP) {
// a nested group
const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info);
AP_Param *ap;
ap = next_group(vindex, ginfo, found_current, GROUP_OFFSET(group_base, i, group_shift),
group_shift + _group_level_shift, token, ptype);
if (ap != NULL) {
return ap;
}
} else {
if (*found_current) {
// got a new one
(*token) = ((uint32_t)GROUP_OFFSET(group_base, i, group_shift)<<16) | vindex;
*ptype = (enum ap_var_type)type;
return (AP_Param*)(pgm_read_pointer(&_var_info[vindex].ptr) + pgm_read_word(&group_info[i].offset));
}
if (GROUP_OFFSET(group_base, i, group_shift) == (*token)>>16) {
*found_current = true;
}
}
}
return NULL;
}
/// Returns the next variable in _var_info, recursing into groups
/// as needed
AP_Param *AP_Param::next(uint32_t *token, enum ap_var_type *ptype)
{
uint16_t i = (*token)&0xFFFF;
bool found_current = false;
if (i >= _num_vars) {
// illegal token
return NULL;
}
uint8_t type = pgm_read_byte(&_var_info[i].type);
if (type != AP_PARAM_GROUP) {
i++;
found_current = true;
}
for (; i<_num_vars; i++) {
type = pgm_read_byte(&_var_info[i].type);
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info);
AP_Param *ap = next_group(i, group_info, &found_current, 0, 0, token, ptype);
if (ap != NULL) {
return ap;
}
} else {
// found the next one
(*token) = i;
*ptype = (enum ap_var_type)type;
return (AP_Param *)(pgm_read_pointer(&_var_info[i].ptr));
}
}
return NULL;
}
/// Returns the next scalar in _var_info, recursing into groups
/// as needed
AP_Param *AP_Param::next_scalar(uint32_t *token, enum ap_var_type *ptype)
{
AP_Param *ap;
while ((ap = next(token, ptype)) != NULL && *ptype > AP_PARAM_FLOAT) ;
return ap;
}

View File

@ -25,10 +25,22 @@
// a varient of offsetof() to work around C++ restrictions. // a varient of offsetof() to work around C++ restrictions.
// this can only be used when the offset of a variable in a object // this can only be used when the offset of a variable in a object
// is constant and known at compile time // is constant and known at compile time
#define VAROFFSET(type, element) (((uintptr_t)(&((const type *)1)->element))-1) #define AP_VAROFFSET(type, element) (((uintptr_t)(&((const type *)1)->element))-1)
// find the type of a variable given the class and element
#define AP_CLASSTYPE(class, element) (((const class *)1)->element.vtype)
// declare a group var_info line
#define AP_GROUPINFO(name, class, element) { AP_CLASSTYPE(class, element), name, AP_VAROFFSET(class, element) }
// declare a nested group entry in a group var_info
#define AP_NESTEDGROUPINFO(class) { AP_PARAM_GROUP, "", 0, class::var_info }
#define AP_GROUPEND { AP_PARAM_NONE, "" }
enum ap_var_type { enum ap_var_type {
AP_PARAM_NONE = 0, AP_PARAM_NONE = 0,
AP_PARAM_SPARE,
AP_PARAM_INT8, AP_PARAM_INT8,
AP_PARAM_INT16, AP_PARAM_INT16,
AP_PARAM_INT32, AP_PARAM_INT32,
@ -46,24 +58,6 @@ enum ap_var_type {
class AP_Param class AP_Param
{ {
public: public:
/// EEPROM header
///
/// This structure is placed at the head of the EEPROM to indicate
/// that the ROM is formatted for AP_Param.
///
struct EEPROM_header {
uint16_t magic;
uint8_t revision;
uint8_t spare;
};
/// This header is prepended to a variable stored in EEPROM.
struct Param_header {
uint16_t type:4;
uint16_t key:9;
uint16_t group_element:3;
};
// the Info and GroupInfo structures are passed by the main // the Info and GroupInfo structures are passed by the main
// program in setup() to give information on how variables are // program in setup() to give information on how variables are
// named and their location in memory // named and their location in memory
@ -71,6 +65,7 @@ public:
uint8_t type; // AP_PARAM_* uint8_t type; // AP_PARAM_*
const char name[AP_MAX_NAME_SIZE]; const char name[AP_MAX_NAME_SIZE];
uintptr_t offset; // offset within the object uintptr_t offset; // offset within the object
const struct GroupInfo *group_info;
}; };
struct Info { struct Info {
uint8_t type; // AP_PARAM_* uint8_t type; // AP_PARAM_*
@ -80,14 +75,10 @@ public:
const struct GroupInfo *group_info; const struct GroupInfo *group_info;
}; };
// every AP_Param type has a vtype which tells its type. This is
// used to make the initialisation of var_info[] less error prone
static const ap_var_type vtype = AP_PARAM_NONE;
// called once at startup to setup the _var_info[] table. This // called once at startup to setup the _var_info[] table. This
// will also check the EEPROM header and re-initialise it if the // will also check the EEPROM header and re-initialise it if the
// wrong version is found // wrong version is found
static bool setup(const struct Info *info, uint16_t num_vars); static bool setup(const struct Info *info, uint16_t num_vars, uint16_t eeprom_size);
/// Copy the variable's name, prefixed by any containing group name, to a buffer. /// Copy the variable's name, prefixed by any containing group name, to a buffer.
/// ///
@ -109,7 +100,7 @@ public:
/// @return A pointer to the variable, or NULL if /// @return A pointer to the variable, or NULL if
/// it does not exist. /// it does not exist.
/// ///
static AP_Param *find(const char *name); static AP_Param *find(const char *name, enum ap_var_type *ptype);
/// Save the current value of the variable to EEPROM. /// Save the current value of the variable to EEPROM.
/// ///
@ -137,23 +128,82 @@ public:
/// ///
static void erase_all(void); static void erase_all(void);
/// Returns the first variable
///
/// @return The first variable in _var_info, or NULL if
/// there are none.
///
static AP_Param *first(uint32_t *token, enum ap_var_type *ptype);
/// Returns the next variable in _var_info, recursing into groups
/// as needed
static AP_Param *next(uint32_t *token, enum ap_var_type *ptype);
/// Returns the next scalar variable in _var_info, recursing into groups
/// as needed
static AP_Param *next_scalar(uint32_t *token, enum ap_var_type *ptype);
private: private:
const struct Info *find_var_info(uint8_t *group_element); /// EEPROM header
///
/// This structure is placed at the head of the EEPROM to indicate
/// that the ROM is formatted for AP_Param.
///
struct EEPROM_header {
uint16_t magic;
uint8_t revision;
uint8_t spare;
};
/// This header is prepended to a variable stored in EEPROM.
struct Param_header {
uint16_t key:9;
uint16_t type:4;
uint16_t spare:3;
uint8_t group_element:8;
};
// number of bits in each level of nesting of groups
static const uint8_t _group_level_shift = 4;
static const uint8_t _group_bits = 8;
static bool check_group_info(const struct GroupInfo *group_info, uint16_t *total_size, uint8_t max_bits);
static bool check_var_info(void);
const struct Info *find_var_info_group(const struct GroupInfo *group_info,
uint8_t vindex,
uint8_t group_base,
uint8_t group_shift,
uint8_t *group_element,
const struct GroupInfo **group_ret);
const struct Info *find_var_info(uint8_t *group_element,
const struct GroupInfo **group_ret);
static const struct Info *find_by_header_group(struct Param_header phdr, void **ptr,
uint8_t vindex,
const struct GroupInfo *group_info,
uint8_t group_base,
uint8_t group_shift);
static const struct Info *find_by_header(struct Param_header phdr, void **ptr); static const struct Info *find_by_header(struct Param_header phdr, void **ptr);
static AP_Param *find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype);
static void write_sentinal(uint16_t ofs); static void write_sentinal(uint16_t ofs);
bool scan(const struct Param_header *phdr, uint16_t *pofs); bool scan(const struct Param_header *phdr, uint16_t *pofs);
static const uint8_t type_size(enum ap_var_type type); static const uint8_t type_size(enum ap_var_type type);
static void eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size); static void eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size);
static AP_Param *next_group(uint8_t vindex, const struct GroupInfo *group_info,
bool *found_current,
uint8_t group_base,
uint8_t group_shift,
uint32_t *token,
enum ap_var_type *ptype);
static uint16_t _eeprom_size;
static uint16_t _num_vars; static uint16_t _num_vars;
static const struct Info *_var_info; static const struct Info *_var_info;
static const uint16_t k_EEPROM_size = 4096; ///< XXX avr-libc doesn't consistently export this
// values filled into the EEPROM header // values filled into the EEPROM header
static const uint16_t k_EEPROM_magic = 0x5041; ///< "AP" static const uint16_t k_EEPROM_magic = 0x5041; ///< "AP"
static const uint16_t k_EEPROM_revision = 3; ///< current format revision static const uint16_t k_EEPROM_revision = 4; ///< current format revision
}; };
/// Template class for scalar variables. /// Template class for scalar variables.