AP_Math: add inverse matrix to math library

This commit is contained in:
Siddharth Bharat Purohit 2015-05-29 00:04:29 -07:00 committed by Andrew Tridgell
parent eec5c2a5eb
commit b654b1c21b
2 changed files with 433 additions and 0 deletions

View File

@ -35,6 +35,7 @@
# define M_PI_2 1.570796326794897f
#endif
//Single precision conversions
#define TINY_FLOAT 1.0e-20f
#define DEG_TO_RAD 0.017453292519943295769236907684886f
#define RAD_TO_DEG 57.295779513082320876798154814105f
@ -172,6 +173,9 @@ float constrain_float(float amt, float low, float high);
int16_t constrain_int16(int16_t amt, int16_t low, int16_t high);
int32_t constrain_int32(int32_t amt, int32_t low, int32_t high);
//matrix algebra
bool inverse(float x[], float y[], uint16_t dim);
// degrees -> radians
float radians(float deg);

View File

@ -0,0 +1,429 @@
#include<AP_Math.h>
#include <AP_HAL.h>
extern const AP_HAL::HAL& hal;
/*
* generic matrix inverse code
*
* @param x, input nxn matrix
* @param n, dimension of square matrix
* @returns determinant of square matrix
* Known Issues/ Possible Enhancements:
* -more efficient method should be available, following is code generated from matlab
*/
float detnxn(const float C[],const uint8_t n)
{
float f;
float *A = new float[n*n];
int8_t *ipiv = new int8_t[n];
int32_t i0;
int32_t j;
int32_t c;
int32_t iy;
int32_t ix;
float smax;
int32_t jy;
float s;
int32_t b_j;
int32_t ijA;
bool isodd;
memcpy(&A[0], &C[0], n*n * sizeof(float));
for (i0 = 0; i0 < n; i0++) {
ipiv[i0] = (int8_t)(1 + i0);
}
for (j = 0; j < n-1; j++) {
c = j * (n+1);
iy = 0;
ix = c;
smax = fabs(A[c]);
for (jy = 2; jy <= n - 1 - j; jy++) {
ix++;
s = fabs(A[ix]);
if (s > smax) {
iy = jy - 1;
smax = s;
}
}
if (A[c + iy] != 0.0) {
if (iy != 0) {
ipiv[j] = (int8_t)((j + iy) + 1);
ix = j;
iy += j;
for (jy = 0; jy < n; jy++) {
smax = A[ix];
A[ix] = A[iy];
A[iy] = smax;
ix += n;
iy += n;
}
}
i0 = (c - j) + n;
for (iy = c + 1; iy + 1 <= i0; iy++) {
A[iy] /= A[c];
}
}
iy = c;
jy = c + n;
for (b_j = 1; b_j <= n - 1 - j; b_j++) {
smax = A[jy];
if (A[jy] != 0.0) {
ix = c + 1;
i0 = (iy - j) + (2*n);
for (ijA = n + 1 + iy; ijA + 1 <= i0; ijA++) {
A[ijA] += A[ix] * -smax;
ix++;
}
}
jy += n;
iy += n;
}
}
f = A[0];
isodd = false;
for (jy = 0; jy < (n-1); jy++) {
f *= A[(jy + n * (1 + jy)) + 1];
if (ipiv[jy] > 1 + jy) {
isodd = !isodd;
}
}
if (isodd) {
f = -f;
}
delete[] A;
delete[] ipiv;
return f;
}
/*
* generic matrix inverse code
*
* @param x, input nxn matrix
* @param y, Output inverted nxn matrix
* @param n, dimension of square matrix
* @returns false = matrix is Singular, true = matrix inversion successful
* Known Issues/ Possible Enhancements:
* -more efficient method should be available, following is code generated from matlab
*/
bool inversenxn(const float x[], float y[], const uint8_t n)
{
if(fabsf(detnxn(x,n)) < TINY_FLOAT) {
return false;
}
float *A = new float[n*n];
int32_t i0;
int32_t *ipiv = new int32_t[n];
int32_t j;
int32_t c;
int32_t pipk;
int32_t ix;
float smax;
int32_t k;
float s;
int32_t jy;
int32_t ijA;
int32_t *p = new int32_t[n];
for (i0 = 0; i0 < n*n; i0++) {
A[i0] = x[i0];
y[i0] = 0.0f;
}
for (i0 = 0; i0 < n; i0++) {
ipiv[i0] = (int32_t)(1 + i0);
}
for (j = 0; j < (n-1); j++) {
c = j * (n+1);
pipk = 0;
ix = c;
smax = fabsf(A[c]);
for (k = 2; k <= (n-1) - j; k++) {
ix++;
s = fabsf(A[ix]);
if (s > smax) {
pipk = k - 1;
smax = s;
}
}
if (A[c + pipk] != 0.0f) {
if (pipk != 0) {
ipiv[j] = (int32_t)((j + pipk) + 1);
ix = j;
pipk += j;
for (k = 0; k < n; k++) {
smax = A[ix];
A[ix] = A[pipk];
A[pipk] = smax;
ix += n;
pipk += n;
}
}
i0 = (c - j) + n;
for (jy = c + 1; jy + 1 <= i0; jy++) {
A[jy] /= A[c];
}
}
pipk = c;
jy = c + n;
for (k = 1; k <= (n-1) - j; k++) {
smax = A[jy];
if (A[jy] != 0.0f) {
ix = c + 1;
i0 = (pipk - j) + (2*n);
for (ijA = (n+1) + pipk; ijA + 1 <= i0; ijA++) {
A[ijA] += A[ix] * -smax;
ix++;
}
}
jy += n;
pipk += n;
}
}
for (i0 = 0; i0 < n; i0++) {
p[i0] = (int32_t)(1 + i0);
}
for (k = 0; k < (n-1); k++) {
if (ipiv[k] > 1 + k) {
pipk = p[ipiv[k] - 1];
p[ipiv[k] - 1] = p[k];
p[k] = (int32_t)pipk;
}
}
for (k = 0; k < n; k++) {
y[k + n * (p[k] - 1)] = 1.0;
for (j = k; j + 1 < (n+1); j++) {
if (y[j + n * (p[k] - 1)] != 0.0f) {
for (jy = j + 1; jy + 1 < (n+1); jy++) {
y[jy + n * (p[k] - 1)] -= y[j + n * (p[k] - 1)] * A[jy + n * j];
}
}
}
}
for (j = 0; j < n; j++) {
c = n * j;
for (k = (n-1); k > -1; k += -1) {
pipk = n * k;
if (y[k + c] != 0.0f) {
y[k + c] /= A[k + pipk];
for (jy = 0; jy + 1 <= k; jy++) {
y[jy + c] -= y[k + c] * A[jy + pipk];
}
}
}
}
delete[] A;
delete[] ipiv;
delete[] p;
return true;
}
/*
* matrix inverse code only for 3x3 square matrix
*
* @param m, input 4x4 matrix
* @param invOut, Output inverted 4x4 matrix
* @returns false = matrix is Singular, true = matrix inversion successful
*/
bool inverse3x3(float m[], float invOut[])
{
float inv[9];
// computes the inverse of a matrix m
float det = m[0] * (m[4] * m[8] - m[7] * m[5]) -
m[1] * (m[3] * m[8] - m[5] * m[6]) +
m[2] * (m[3] * m[7] - m[4] * m[6]);
if(fabsf(det) < TINY_FLOAT){
return false;
}
float invdet = 1 / det;
inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet;
inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet;
inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet;
inv[3] = (m[5] * m[6] - m[5] * m[8]) * invdet;
inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet;
inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet;
inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet;
inv[7] = (m[6] * m[1] - m[0] * m[7]) * invdet;
inv[8] = (m[0] * m[4] - m[3] * m[1]) * invdet;
for(uint8_t i = 0; i < 9; i++){
invOut[i] = inv[i];
}
return true;
}
/*
* matrix inverse code only for 4x4 square matrix copied from
* gluInvertMatrix implementation in
* opengl for 4x4 matrices.
*
* @param m, input 4x4 matrix
* @param invOut, Output inverted 4x4 matrix
* @returns false = matrix is Singular, true = matrix inversion successful
*/
bool inverse4x4(float m[],float invOut[])
{
float inv[16], det;
uint8_t i;
inv[0] = m[5] * m[10] * m[15] -
m[5] * m[11] * m[14] -
m[9] * m[6] * m[15] +
m[9] * m[7] * m[14] +
m[13] * m[6] * m[11] -
m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] +
m[4] * m[11] * m[14] +
m[8] * m[6] * m[15] -
m[8] * m[7] * m[14] -
m[12] * m[6] * m[11] +
m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] -
m[4] * m[11] * m[13] -
m[8] * m[5] * m[15] +
m[8] * m[7] * m[13] +
m[12] * m[5] * m[11] -
m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] +
m[4] * m[10] * m[13] +
m[8] * m[5] * m[14] -
m[8] * m[6] * m[13] -
m[12] * m[5] * m[10] +
m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] +
m[1] * m[11] * m[14] +
m[9] * m[2] * m[15] -
m[9] * m[3] * m[14] -
m[13] * m[2] * m[11] +
m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] -
m[0] * m[11] * m[14] -
m[8] * m[2] * m[15] +
m[8] * m[3] * m[14] +
m[12] * m[2] * m[11] -
m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] +
m[0] * m[11] * m[13] +
m[8] * m[1] * m[15] -
m[8] * m[3] * m[13] -
m[12] * m[1] * m[11] +
m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] -
m[0] * m[10] * m[13] -
m[8] * m[1] * m[14] +
m[8] * m[2] * m[13] +
m[12] * m[1] * m[10] -
m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] -
m[1] * m[7] * m[14] -
m[5] * m[2] * m[15] +
m[5] * m[3] * m[14] +
m[13] * m[2] * m[7] -
m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] +
m[0] * m[7] * m[14] +
m[4] * m[2] * m[15] -
m[4] * m[3] * m[14] -
m[12] * m[2] * m[7] +
m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] -
m[0] * m[7] * m[13] -
m[4] * m[1] * m[15] +
m[4] * m[3] * m[13] +
m[12] * m[1] * m[7] -
m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] +
m[0] * m[6] * m[13] +
m[4] * m[1] * m[14] -
m[4] * m[2] * m[13] -
m[12] * m[1] * m[6] +
m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] +
m[1] * m[7] * m[10] +
m[5] * m[2] * m[11] -
m[5] * m[3] * m[10] -
m[9] * m[2] * m[7] +
m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] -
m[0] * m[7] * m[10] -
m[4] * m[2] * m[11] +
m[4] * m[3] * m[10] +
m[8] * m[2] * m[7] -
m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] +
m[0] * m[7] * m[9] +
m[4] * m[1] * m[11] -
m[4] * m[3] * m[9] -
m[8] * m[1] * m[7] +
m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] -
m[0] * m[6] * m[9] -
m[4] * m[1] * m[10] +
m[4] * m[2] * m[9] +
m[8] * m[1] * m[6] -
m[8] * m[2] * m[5];
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if(fabsf(det) < TINY_FLOAT){
return false;
}
det = 1.0f / det;
for (i = 0; i < 16; i++)
invOut[i] = inv[i] * det;
return true;
}
/*
* generic matrix inverse code
*
* @param x, input nxn matrix
* @param y, Output inverted nxn matrix
* @param n, dimension of square matrix
* @returns false = matrix is Singular, true = matrix inversion successful
*/
bool inverse(float x[], float y[], uint16_t dim)
{
switch(dim){
case 3: return inverse3x3(x,y);
case 4: return inverse4x4(x,y);
default: return inversenxn(x,y,dim);
}
}