Libraries to support non AP_VAR usage. This is for Ardupilot legacy hardware.

git-svn-id: https://arducopter.googlecode.com/svn/trunk@2075 f9c3cf11-9bcb-44bc-f272-b75c42450872
This commit is contained in:
jasonshort 2011-05-03 04:33:32 +00:00
parent 6d4b77340b
commit b56992c5dd
9 changed files with 756 additions and 0 deletions

View File

@ -0,0 +1,65 @@
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file AP_PID.cpp
/// @brief Generic PID algorithm
#include <math.h>
#include "AP_PID.h"
AP_PID::AP_PID()
{
}
long
AP_PID::get_pid(int32_t error, uint16_t dt, float scaler)
{
float output = 0;
float delta_time = (float)dt / 1000.0;
// Compute proportional component
output += error * _kp;
// Compute derivative component if time has elapsed
if ((fabs(_kd) > 0) && (dt > 0)) {
float derivative = (error - _last_error) / delta_time;
// discrete low pass filter, cuts out the
// high frequency noise that can drive the controller crazy
float RC = 1/(2*M_PI*_fCut);
derivative = _last_derivative +
(delta_time / (RC + delta_time)) * (derivative - _last_derivative);
// update state
_last_error = error;
_last_derivative = derivative;
// add in derivative component
output += _kd * derivative;
}
// scale the P and D components
output *= scaler;
// Compute integral component if time has elapsed
if ((fabs(_ki) > 0) && (dt > 0)) {
_integrator += (error * _ki) * scaler * delta_time;
if (_integrator < -_imax) {
_integrator = -_imax;
} else if (_integrator > _imax) {
_integrator = _imax;
}
output += _integrator;
}
return output;
}
void
AP_PID::reset_I()
{
_integrator = 0;
_last_error = 0;
_last_derivative = 0;
}

55
libraries/AP_PID/AP_PID.h Normal file
View File

@ -0,0 +1,55 @@
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file AP_PID.h
/// @brief Generic PID algorithm, with EEPROM-backed storage of constants.
#ifndef AP_PID_h
#define AP_PID_h
#include <AP_Common.h>
#include <math.h> // for fabs()
/// @class AP_PID
/// @brief Object managing one PID control
class AP_PID {
public:
AP_PID();
long get_pid(int32_t error, uint16_t dt, float scaler = 1.0);
/// Reset the PID integrator
///
void reset_I();
void kP(const float v) { _kp = v; }
void kI(const float v) { _ki = v; }
void kD(const float v) { _kd = v; }
void imax(const int16_t v) { _imax = v; }
float kP() { return _kp; }
float kI() { return _ki; }
float kD() { return _kd; }
float imax() { return _imax; }
float get_integrator() const { return _integrator; }
private:
float _kp;
float _ki;
float _kd;
float _imax;
float _integrator; ///< integrator value
int32_t _last_error; ///< last error for derivative
float _last_derivative; ///< last derivative for low-pass filter
/// Low pass filter cut frequency for derivative calculation.
///
/// 20 Hz becasue anything over that is probably noise, see
/// http://en.wikipedia.org/wiki/Low-pass_filter.
///
static const uint8_t _fCut = 20;
};
#endif

View File

@ -0,0 +1,48 @@
/*
Example of PID library.
2010 Code by Jason Short. DIYDrones.com
*/
#include <FastSerial.h>
#include <AP_Common.h>
#include <APM_RC.h> // ArduPilot RC Library
#include <PID.h> // ArduPilot Mega RC Library
long radio_in;
long radio_trim;
PID pid();
void setup()
{
Serial.begin(38400);
Serial.println("ArduPilot Mega PID library test");
APM_RC.Init(); // APM Radio initialization
delay(1000);
//rc.trim();
radio_trim = APM_RC.InputCh(0);
pid.kP(1);
pid.kI(0);
pid.kD(0.5);
pid.imax(50);
pid.save_gains();
pid.kP(0);
pid.kI(0);
pid.kD(0);
pid.imax(0);
pid.load_gains();
Serial.printf("P %f I %f D %f imax %f\n", pid.kP(), pid.kI(), pid.kD(), pid.imax());
}
void loop()
{
delay(20);
//rc.read_pwm();
long error = APM_RC.InputCh(0) - radio_trim;
long control = pid.get_pid(error, 20, 1);
Serial.print("control: ");
Serial.println(control,DEC);
}

View File

@ -0,0 +1,2 @@
BOARD = mega
include ../../../AP_Common/Arduino.mk

View File

@ -0,0 +1,9 @@
PID KEYWORD1
get_pid KEYWORD2
reset_I KEYWORD2
kP KEYWORD2
kD KEYWORD2
kI KEYWORD2
imax KEYWORD2
load_gains KEYWORD2
save_gains KEYWORD2

View File

@ -0,0 +1,240 @@
/*
AP_RC_Channel.cpp - Radio library for Arduino
Code by Jason Short. DIYDrones.com
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include <math.h>
#include <avr/eeprom.h>
#include "WProgram.h"
#include "AP_RC_Channel.h"
#define ANGLE 0
#define RANGE 1
// setup the control preferences
void
AP_RC_Channel::set_range(int low, int high)
{
_type = RANGE;
_high = high;
_low = low;
}
void
AP_RC_Channel::set_angle(int angle)
{
_type = ANGLE;
_high = angle;
}
void
AP_RC_Channel::set_reverse(bool reverse)
{
if (reverse) _reverse = -1;
else _reverse = 1;
}
bool
AP_RC_Channel::get_reverse(void)
{
if (_reverse==-1) return 1;
else return 0;
}
void
AP_RC_Channel::set_filter(bool filter)
{
_filter = filter;
}
// call after first read
void
AP_RC_Channel::trim()
{
radio_trim = radio_in;
}
// read input from APM_RC - create a control_in value
void
AP_RC_Channel::set_pwm(int pwm)
{
//Serial.print(pwm,DEC);
if(_filter){
if(radio_in == 0)
radio_in = pwm;
else
radio_in = ((pwm + radio_in) >> 1); // Small filtering
}else{
radio_in = pwm;
}
if(_type == RANGE){
//Serial.print("range ");
control_in = pwm_to_range();
control_in = (control_in < dead_zone) ? 0 : control_in;
if (fabs(scale_output) > 0){
control_in *= scale_output;
}
}else{
control_in = pwm_to_angle();
control_in = (abs(control_in) < dead_zone) ? 0 : control_in;
if (fabs(scale_output) > 0){
control_in *= scale_output;
}
}
}
int
AP_RC_Channel::control_mix(float value)
{
return (1 - abs(control_in / _high)) * value + control_in;
}
// are we below a threshold?
bool
AP_RC_Channel::get_failsafe(void)
{
return (radio_in < (radio_min - 50));
}
// returns just the PWM without the offset from radio_min
void
AP_RC_Channel::calc_pwm(void)
{
if(_type == RANGE){
pwm_out = range_to_pwm();
radio_out = pwm_out + radio_min;
}else{
pwm_out = angle_to_pwm();
radio_out = pwm_out + radio_trim;
}
radio_out = constrain(radio_out, radio_min, radio_max);
}
// ------------------------------------------
void
AP_RC_Channel::load_eeprom(void)
{
radio_min = eeprom_read_word((uint16_t *) _address);
radio_max = eeprom_read_word((uint16_t *) (_address + 2));
load_trim();
}
void
AP_RC_Channel::save_eeprom(void)
{
eeprom_write_word((uint16_t *) _address, radio_min);
eeprom_write_word((uint16_t *) (_address + 2), radio_max);
save_trim();
}
// ------------------------------------------
void
AP_RC_Channel::save_trim(void)
{
eeprom_write_word((uint16_t *) (_address + 4), radio_trim);
//_ee.write_int((_address + 4), radio_trim);
}
void
AP_RC_Channel::load_trim(void)
{
radio_trim = eeprom_read_word((uint16_t *) (_address + 4));
//_ee.write_int((_address + 4), radio_trim);
}
// ------------------------------------------
void
AP_RC_Channel::zero_min_max()
{
radio_min = radio_max = radio_in;
}
void
AP_RC_Channel::update_min_max()
{
radio_min = min(radio_min, radio_in);
radio_max = max(radio_max, radio_in);
}
// ------------------------------------------
int16_t
AP_RC_Channel::pwm_to_angle()
{
if(radio_in < radio_trim)
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_trim - radio_min);
else
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_max - radio_trim);
//return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_max - radio_trim));
//return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_trim - radio_min));
}
int16_t
AP_RC_Channel::angle_to_pwm()
{
if(_reverse == -1)
{
if(servo_out < 0)
return ( -1 * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high);
else
return ( -1 * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high);
} else {
if(servo_out > 0)
return ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high;
else
return ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high;
}
//return (((float)servo_out / (float)_high) * (float)(radio_max - radio_trim));
//return (((float)servo_out / (float)_high) * (float)(radio_trim - radio_min));
}
// ------------------------------------------
int16_t
AP_RC_Channel::pwm_to_range()
{
//return (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min))));
return (_low + ((long)(_high - _low) * (long)(radio_in - radio_min)) / (long)(radio_max - radio_min));
}
int16_t
AP_RC_Channel::range_to_pwm()
{
//return (((float)(servo_out - _low) / (float)(_high - _low)) * (float)(radio_max - radio_min));
return ((long)(servo_out - _low) * (long)(radio_max - radio_min)) / (long)(_high - _low);
}
// ------------------------------------------
float
AP_RC_Channel::norm_input()
{
if(radio_in < radio_trim)
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
else
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
float
AP_RC_Channel::norm_output()
{
if(radio_out < radio_trim)
return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min);
else
return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim);
}

View File

@ -0,0 +1,112 @@
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file AP_RC_Channel.h
/// @brief AP_RC_Channel manager, with EEPROM-backed storage of constants.
#ifndef AP_RC_Channel_h
#define AP_RC_Channel_h
//#include <AP_Common.h>
#include <stdint.h>
/// @class AP_RC_Channel
/// @brief Object managing one RC channel
class AP_RC_Channel{
public:
/// Constructor
///
/// @param key EEPROM storage key for the channel trim parameters.
/// @param name Optional name for the group.
///
AP_RC_Channel(uint16_t address) :
_address(address),
_high(1),
_filter(true),
_reverse(1),
dead_zone(0),
scale_output(1.0)
{}
AP_RC_Channel() :
_high(1),
_filter(true),
_reverse(1),
dead_zone(0),
scale_output(1.0)
{}
// setup min and max radio values in CLI
void update_min_max();
void zero_min_max();
// startup
void load_eeprom(void);
void save_eeprom(void);
void save_trim(void);
void load_trim(void);
void set_filter(bool filter);
// setup the control preferences
void set_range(int low, int high);
void set_angle(int angle);
void set_reverse(bool reverse);
bool get_reverse(void);
// read input from APM_RC - create a control_in value
void set_pwm(int pwm);
// pwm is stored here
int16_t radio_in;
// call after first set_pwm
void trim();
// did our read come in 50µs below the min?
bool get_failsafe(void);
// value generated from PWM
int16_t control_in;
int16_t dead_zone; // used to keep noise down and create a dead zone.
int control_mix(float value);
// current values to the servos - degrees * 100 (approx assuming servo is -45 to 45 degrees except [3] is 0 to 100
int16_t servo_out;
// generate PWM from servo_out value
void calc_pwm(void);
// PWM is without the offset from radio_min
int16_t pwm_out;
int16_t radio_out;
int16_t radio_min;
int16_t radio_trim;
int16_t radio_max;
// includes offset from PWM
//int16_t get_radio_out(void);
int16_t pwm_to_angle();
float norm_input();
float norm_output();
int16_t angle_to_pwm();
int16_t pwm_to_range();
int16_t range_to_pwm();
float scale_output;
private:
bool _filter;
int8_t _reverse;
int16_t _address;
bool _type;
int16_t _high;
int16_t _low;
};
#endif

View File

@ -0,0 +1,223 @@
/*
Example of AP_RC_Channel library.
Code by Jason Short. 2010
DIYDrones.com
*/
#include <AP_RC.h> // ArduPilot RC Library
#include <AP_RC_Channel.h> // ArduPilot RC Library
#define EE_RADIO_1 0x00 // all gains stored from here
#define EE_RADIO_2 0x06 // all gains stored from here
#define EE_RADIO_3 0x0C // all gains stored from here
#define EE_RADIO_4 0x12 // all gains stored from here
AP_RC_Channel rc_1(EE_RADIO_1);
AP_RC_Channel rc_2(EE_RADIO_2);
AP_RC_Channel rc_3(EE_RADIO_3);
AP_RC_Channel rc_4(EE_RADIO_4);
AP_RC rc;
#define CH_1 0
#define CH_2 1
#define CH_3 2
#define CH_4 3
void setup()
{
Serial.begin(115200);
//Serial.begin(38400);
Serial.println("ArduPilot RC Channel test");
rc.init(); // APM Radio initialization
delay(500);
// setup radio
// read eepom or set manually
/*
rc_1.radio_min = 1100;
rc_1.radio_max = 1900;
rc_2.radio_min = 1100;
rc_2.radio_max = 1900;
rc_3.radio_min = 1100;
rc_3.radio_max = 1900;
rc_4.radio_min = 1100;
rc_4.radio_max = 1900;
// or
rc_1.load_eeprom();
rc_2.load_eeprom();
rc_3.load_eeprom();
rc_4.load_eeprom();
*/
// interactive setup
setup_radio();
print_radio_values();
// set type of output, symmetrical angles or a number range;
rc_1.set_angle(4500);
rc_2.set_angle(4500);
rc_3.set_range(0,1000);
rc_4.set_angle(4500);
rc_1.dead_zone = 85;
rc_2.dead_zone = 85;
rc_3.dead_zone = 85;
rc_4.dead_zone = 85;
for (byte i = 0; i < 30; i++){
read_radio();
}
rc_1.trim();
rc_2.trim();
rc_4.trim();
}
void loop()
{
delay(20);
read_radio();
rc_1.servo_out = rc_1.control_in;
rc_2.servo_out = rc_2.control_in;
rc_3.servo_out = rc_3.control_in;
rc_4.servo_out = rc_4.control_in;
rc_1.calc_pwm();
rc_2.calc_pwm();
rc_3.calc_pwm();
rc_4.calc_pwm();
print_pwm();
print_control_in();
// send values to the PWM timers for output
// ----------------------------------------
rc.output_ch_pwm(CH_1, rc_1.radio_out); // send to Servos
rc.output_ch_pwm(CH_2, rc_2.radio_out); // send to Servos
rc.output_ch_pwm(CH_3, rc_3.radio_out); // send to Servos
rc.output_ch_pwm(CH_4, rc_4.radio_out); // send to Servos
}
void read_radio()
{
rc_1.set_pwm(rc.input_ch(CH_1));
rc_2.set_pwm(rc.input_ch(CH_2));
rc_3.set_pwm(rc.input_ch(CH_3));
rc_4.set_pwm(rc.input_ch(CH_4));
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"), rc_1.control_in, rc_2.control_in, rc_3.control_in, rc_4.control_in);
}
void print_pwm()
{
Serial.print("1: ");
Serial.print(rc_1.radio_out, DEC);
Serial.print("\t2: ");
Serial.print(rc_2.radio_out, DEC);
Serial.print("\t3:");
Serial.print(rc_3.radio_out, DEC);
Serial.print("\t4:");
Serial.print(rc_4.radio_out , DEC);
}
// 1280
// 1536
// 1795
void print_control_in()
{
Serial.print("\t1: ");
Serial.print(rc_1.control_in, DEC);
Serial.print("\t2: ");
Serial.print(rc_2.control_in, DEC);
Serial.print("\t3:");
Serial.print(rc_3.control_in, DEC);
Serial.print("\t4:");
Serial.println(rc_4.control_in, DEC);
}
void
print_radio_values()
{
Serial.print("CH1: ");
Serial.print(rc_1.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_1.radio_max, DEC);
Serial.print("CH2: ");
Serial.print(rc_2.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_2.radio_max, DEC);
Serial.print("CH3: ");
Serial.print(rc_3.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_3.radio_max, DEC);
Serial.print("CH4: ");
Serial.print(rc_4.radio_min, DEC);
Serial.print(" | ");
Serial.println(rc_4.radio_max, DEC);
}
void
setup_radio()
{
Serial.println("\n\nRadio Setup:");
uint8_t i;
for(i = 0; i < 100;i++){
delay(20);
read_radio();
}
rc_1.radio_min = rc_1.radio_in;
rc_2.radio_min = rc_2.radio_in;
rc_3.radio_min = rc_3.radio_in;
rc_4.radio_min = rc_4.radio_in;
rc_1.radio_max = rc_1.radio_in;
rc_2.radio_max = rc_2.radio_in;
rc_3.radio_max = rc_3.radio_in;
rc_4.radio_max = rc_4.radio_in;
rc_1.radio_trim = rc_1.radio_in;
rc_2.radio_trim = rc_2.radio_in;
rc_4.radio_trim = rc_4.radio_in;
Serial.println("\nMove all controls to each extreme. Hit Enter to save:");
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
rc_1.update_min_max();
rc_2.update_min_max();
rc_3.update_min_max();
rc_4.update_min_max();
if(Serial.available() > 0){
//rc_3.radio_max += 250;
Serial.flush();
Serial.println("Radio calibrated, Showing control values:");
break;
}
}
return;
}

View File

@ -0,0 +1,2 @@
BOARD = mega
include ../../../AP_Common/Arduino.mk