mirror of https://github.com/ArduPilot/ardupilot
AP_NavEKF2: added frontend calls to core code
This commit is contained in:
parent
3ac75aeffb
commit
b4555f30a5
|
@ -5,6 +5,7 @@
|
|||
|
||||
#include "AP_NavEKF2_core.h"
|
||||
#include <AP_Vehicle/AP_Vehicle.h>
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
|
||||
/*
|
||||
parameter defaults for different types of vehicle. The
|
||||
|
@ -347,7 +348,10 @@ const AP_Param::GroupInfo NavEKF2::var_info[] PROGMEM = {
|
|||
AP_GROUPEND
|
||||
};
|
||||
|
||||
NavEKF2::NavEKF2() :
|
||||
NavEKF2::NavEKF2(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng) :
|
||||
_ahrs(ahrs),
|
||||
_baro(baro),
|
||||
_rng(rng),
|
||||
gpsNEVelVarAccScale(0.05f), // Scale factor applied to horizontal velocity measurement variance due to manoeuvre acceleration - used when GPS doesn't report speed error
|
||||
gpsDVelVarAccScale(0.07f), // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration - used when GPS doesn't report speed error
|
||||
gpsPosVarAccScale(0.05f), // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration
|
||||
|
@ -384,4 +388,408 @@ NavEKF2::NavEKF2() :
|
|||
AP_Param::setup_object_defaults(this, var_info);
|
||||
}
|
||||
|
||||
|
||||
// Initialise the filter
|
||||
bool NavEKF2::InitialiseFilter(void)
|
||||
{
|
||||
if (_enable == 0) {
|
||||
return false;
|
||||
}
|
||||
if (core == nullptr) {
|
||||
core = new NavEKF2_core(*this, _ahrs, _baro, _rng);
|
||||
if (core == nullptr) {
|
||||
_enable.set(0);
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, PSTR("NavEKF2: allocation failed"));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return core->InitialiseFilterBootstrap();
|
||||
}
|
||||
|
||||
// Update Filter States - this should be called whenever new IMU data is available
|
||||
void NavEKF2::UpdateFilter(void)
|
||||
{
|
||||
if (core) {
|
||||
core->UpdateFilter();
|
||||
}
|
||||
}
|
||||
|
||||
// Check basic filter health metrics and return a consolidated health status
|
||||
bool NavEKF2::healthy(void) const
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->healthy();
|
||||
}
|
||||
|
||||
// Return the last calculated NED position relative to the reference point (m).
|
||||
// If a calculated solution is not available, use the best available data and return false
|
||||
// If false returned, do not use for flight control
|
||||
bool NavEKF2::getPosNED(Vector3f &pos) const
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->getPosNED(pos);
|
||||
}
|
||||
|
||||
// return NED velocity in m/s
|
||||
void NavEKF2::getVelNED(Vector3f &vel) const
|
||||
{
|
||||
if (core) {
|
||||
core->getVelNED(vel);
|
||||
}
|
||||
}
|
||||
|
||||
// This returns the specific forces in the NED frame
|
||||
void NavEKF2::getAccelNED(Vector3f &accelNED) const
|
||||
{
|
||||
if (core) {
|
||||
core->getAccelNED(accelNED);
|
||||
}
|
||||
}
|
||||
|
||||
// return body axis gyro bias estimates in rad/sec
|
||||
void NavEKF2::getGyroBias(Vector3f &gyroBias) const
|
||||
{
|
||||
if (core) {
|
||||
core->getGyroBias(gyroBias);
|
||||
}
|
||||
}
|
||||
|
||||
// return body axis gyro scale factor estimates
|
||||
void NavEKF2::getGyroScale(Vector3f &gyroScale) const
|
||||
{
|
||||
if (core) {
|
||||
core->getGyroScale(gyroScale);
|
||||
}
|
||||
}
|
||||
|
||||
// return tilt error convergence metric
|
||||
void NavEKF2::getTiltError(float &ang) const
|
||||
{
|
||||
if (core) {
|
||||
core->getTiltError(ang);
|
||||
}
|
||||
}
|
||||
|
||||
// reset body axis gyro bias estimates
|
||||
void NavEKF2::resetGyroBias(void)
|
||||
{
|
||||
if (core) {
|
||||
core->resetGyroBias();
|
||||
}
|
||||
}
|
||||
|
||||
// Resets the baro so that it reads zero at the current height
|
||||
// Resets the EKF height to zero
|
||||
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
|
||||
// Returns true if the height datum reset has been performed
|
||||
// If using a range finder for height no reset is performed and it returns false
|
||||
bool NavEKF2::resetHeightDatum(void)
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->resetHeightDatum();
|
||||
}
|
||||
|
||||
// Commands the EKF to not use GPS.
|
||||
// This command must be sent prior to arming as it will only be actioned when the filter is in static mode
|
||||
// This command is forgotten by the EKF each time it goes back into static mode (eg the vehicle disarms)
|
||||
// Returns 0 if command rejected
|
||||
// Returns 1 if attitude, vertical velocity and vertical position will be provided
|
||||
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
|
||||
uint8_t NavEKF2::setInhibitGPS(void)
|
||||
{
|
||||
if (!core) {
|
||||
return 0;
|
||||
}
|
||||
return core->setInhibitGPS();
|
||||
}
|
||||
|
||||
// return the horizontal speed limit in m/s set by optical flow sensor limits
|
||||
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
|
||||
void NavEKF2::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
|
||||
{
|
||||
if (core) {
|
||||
core->getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
|
||||
}
|
||||
}
|
||||
|
||||
// return weighting of first IMU in blending function
|
||||
void NavEKF2::getIMU1Weighting(float &ret) const
|
||||
{
|
||||
if (core) {
|
||||
core->getIMU1Weighting(ret);
|
||||
}
|
||||
}
|
||||
|
||||
// return the individual Z-accel bias estimates in m/s^2
|
||||
void NavEKF2::getAccelZBias(float &zbias1, float &zbias2) const
|
||||
{
|
||||
if (core) {
|
||||
core->getAccelZBias(zbias1, zbias2);
|
||||
}
|
||||
}
|
||||
|
||||
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
|
||||
void NavEKF2::getWind(Vector3f &wind) const
|
||||
{
|
||||
if (core) {
|
||||
core->getWind(wind);
|
||||
}
|
||||
}
|
||||
|
||||
// return earth magnetic field estimates in measurement units / 1000
|
||||
void NavEKF2::getMagNED(Vector3f &magNED) const
|
||||
{
|
||||
if (core) {
|
||||
core->getMagNED(magNED);
|
||||
}
|
||||
}
|
||||
|
||||
// return body magnetic field estimates in measurement units / 1000
|
||||
void NavEKF2::getMagXYZ(Vector3f &magXYZ) const
|
||||
{
|
||||
if (core) {
|
||||
core->getMagXYZ(magXYZ);
|
||||
}
|
||||
}
|
||||
|
||||
// Return estimated magnetometer offsets
|
||||
// Return true if magnetometer offsets are valid
|
||||
bool NavEKF2::getMagOffsets(Vector3f &magOffsets) const
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->getMagOffsets(magOffsets);
|
||||
}
|
||||
|
||||
// Return the last calculated latitude, longitude and height in WGS-84
|
||||
// If a calculated location isn't available, return a raw GPS measurement
|
||||
// The status will return true if a calculation or raw measurement is available
|
||||
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
|
||||
bool NavEKF2::getLLH(struct Location &loc) const
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->getLLH(loc);
|
||||
}
|
||||
|
||||
// return the latitude and longitude and height used to set the NED origin
|
||||
// All NED positions calculated by the filter are relative to this location
|
||||
// Returns false if the origin has not been set
|
||||
bool NavEKF2::getOriginLLH(struct Location &loc) const
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->getOriginLLH(loc);
|
||||
}
|
||||
|
||||
// set the latitude and longitude and height used to set the NED origin
|
||||
// All NED positions calcualted by the filter will be relative to this location
|
||||
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed)
|
||||
// Returns false if the filter has rejected the attempt to set the origin
|
||||
bool NavEKF2::setOriginLLH(struct Location &loc)
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->setOriginLLH(loc);
|
||||
}
|
||||
|
||||
// return estimated height above ground level
|
||||
// return false if ground height is not being estimated.
|
||||
bool NavEKF2::getHAGL(float &HAGL) const
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->getHAGL(HAGL);
|
||||
}
|
||||
|
||||
// return the Euler roll, pitch and yaw angle in radians
|
||||
void NavEKF2::getEulerAngles(Vector3f &eulers) const
|
||||
{
|
||||
if (core) {
|
||||
core->getEulerAngles(eulers);
|
||||
}
|
||||
}
|
||||
|
||||
// return the transformation matrix from XYZ (body) to NED axes
|
||||
void NavEKF2::getRotationBodyToNED(Matrix3f &mat) const
|
||||
{
|
||||
if (core) {
|
||||
core->getRotationBodyToNED(mat);
|
||||
}
|
||||
}
|
||||
|
||||
// return the quaternions defining the rotation from NED to XYZ (body) axes
|
||||
void NavEKF2::getQuaternion(Quaternion &quat) const
|
||||
{
|
||||
if (core) {
|
||||
core->getQuaternion(quat);
|
||||
}
|
||||
}
|
||||
|
||||
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
|
||||
void NavEKF2::getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const
|
||||
{
|
||||
if (core) {
|
||||
core->getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov);
|
||||
}
|
||||
}
|
||||
|
||||
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
|
||||
void NavEKF2::getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const
|
||||
{
|
||||
if (core) {
|
||||
core->getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
|
||||
}
|
||||
}
|
||||
|
||||
// should we use the compass? This is public so it can be used for
|
||||
// reporting via ahrs.use_compass()
|
||||
bool NavEKF2::use_compass(void) const
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->use_compass();
|
||||
}
|
||||
|
||||
// write the raw optical flow measurements
|
||||
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
|
||||
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
|
||||
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
|
||||
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
|
||||
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
|
||||
void NavEKF2::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas)
|
||||
{
|
||||
if (core) {
|
||||
core->writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas);
|
||||
}
|
||||
}
|
||||
|
||||
// return data for debugging optical flow fusion
|
||||
void NavEKF2::getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov,
|
||||
float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const
|
||||
{
|
||||
if (core) {
|
||||
core->getFlowDebug(varFlow, gndOffset, flowInnovX, flowInnovY, auxInnov, HAGL, rngInnov, range, gndOffsetErr);
|
||||
}
|
||||
}
|
||||
|
||||
// called by vehicle code to specify that a takeoff is happening
|
||||
// causes the EKF to compensate for expected barometer errors due to ground effect
|
||||
void NavEKF2::setTakeoffExpected(bool val)
|
||||
{
|
||||
if (core) {
|
||||
core->setTakeoffExpected(val);
|
||||
}
|
||||
}
|
||||
|
||||
// called by vehicle code to specify that a touchdown is expected to happen
|
||||
// causes the EKF to compensate for expected barometer errors due to ground effect
|
||||
void NavEKF2::setTouchdownExpected(bool val)
|
||||
{
|
||||
if (core) {
|
||||
core->setTouchdownExpected(val);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
return the filter fault status as a bitmasked integer
|
||||
0 = quaternions are NaN
|
||||
1 = velocities are NaN
|
||||
2 = badly conditioned X magnetometer fusion
|
||||
3 = badly conditioned Y magnetometer fusion
|
||||
5 = badly conditioned Z magnetometer fusion
|
||||
6 = badly conditioned airspeed fusion
|
||||
7 = badly conditioned synthetic sideslip fusion
|
||||
7 = filter is not initialised
|
||||
*/
|
||||
void NavEKF2::getFilterFaults(uint8_t &faults) const
|
||||
{
|
||||
if (core) {
|
||||
core->getFilterFaults(faults);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
return filter timeout status as a bitmasked integer
|
||||
0 = position measurement timeout
|
||||
1 = velocity measurement timeout
|
||||
2 = height measurement timeout
|
||||
3 = magnetometer measurement timeout
|
||||
5 = unassigned
|
||||
6 = unassigned
|
||||
7 = unassigned
|
||||
7 = unassigned
|
||||
*/
|
||||
void NavEKF2::getFilterTimeouts(uint8_t &timeouts) const
|
||||
{
|
||||
if (core) {
|
||||
core->getFilterTimeouts(timeouts);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
return filter status flags
|
||||
*/
|
||||
void NavEKF2::getFilterStatus(nav_filter_status &status) const
|
||||
{
|
||||
if (core) {
|
||||
core->getFilterStatus(status);
|
||||
}
|
||||
}
|
||||
|
||||
// send an EKF_STATUS_REPORT message to GCS
|
||||
void NavEKF2::send_status_report(mavlink_channel_t chan)
|
||||
{
|
||||
if (core) {
|
||||
core->send_status_report(chan);
|
||||
}
|
||||
}
|
||||
|
||||
// provides the height limit to be observed by the control loops
|
||||
// returns false if no height limiting is required
|
||||
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
|
||||
bool NavEKF2::getHeightControlLimit(float &height) const
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->getHeightControlLimit(height);
|
||||
}
|
||||
|
||||
// provides the quaternion that was used by the INS calculation to
|
||||
// rotate from the previous orientation to the orientaion at the
|
||||
// current time step
|
||||
// returns a zero rotation quaternion if the INS
|
||||
// calculation was not performed on that time step.
|
||||
Quaternion NavEKF2::getDeltaQuaternion(void) const
|
||||
{
|
||||
if (!core) {
|
||||
return Quaternion();
|
||||
}
|
||||
return core->getDeltaQuaternion();
|
||||
}
|
||||
|
||||
// return the amount of yaw angle change due to the last yaw angle reset in radians
|
||||
// returns true if a reset yaw angle has been updated and not queried
|
||||
// this function should not have more than one client
|
||||
bool NavEKF2::getLastYawResetAngle(float &yawAng)
|
||||
{
|
||||
if (!core) {
|
||||
return false;
|
||||
}
|
||||
return core->getLastYawResetAngle(yawAng);
|
||||
}
|
||||
|
||||
#endif //HAL_CPU_CLASS
|
||||
|
|
|
@ -25,12 +25,206 @@
|
|||
#include <AP_Math/AP_Math.h>
|
||||
#include <AP_Param/AP_Param.h>
|
||||
#include <GCS_MAVLink/GCS_MAVLink.h>
|
||||
#include <AP_NavEKF/AP_Nav_Common.h>
|
||||
#include <AP_Baro/AP_Baro.h>
|
||||
#include <AP_Airspeed/AP_Airspeed.h>
|
||||
#include <AP_Compass/AP_Compass.h>
|
||||
#include <AP_NavEKF/AP_Nav_Common.h>
|
||||
#include <AP_RangeFinder/AP_RangeFinder.h>
|
||||
|
||||
class NavEKF2_core;
|
||||
class AP_AHRS;
|
||||
|
||||
class NavEKF2
|
||||
{
|
||||
public:
|
||||
friend class NavEKF2_core;
|
||||
static const struct AP_Param::GroupInfo var_info[];
|
||||
NavEKF2();
|
||||
|
||||
NavEKF2(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng);
|
||||
|
||||
// Initialise the filter
|
||||
bool InitialiseFilter(void);
|
||||
|
||||
// Update Filter States - this should be called whenever new IMU data is available
|
||||
void UpdateFilter(void);
|
||||
|
||||
// Check basic filter health metrics and return a consolidated health status
|
||||
bool healthy(void) const;
|
||||
|
||||
// Return the last calculated NED position relative to the reference point (m).
|
||||
// If a calculated solution is not available, use the best available data and return false
|
||||
// If false returned, do not use for flight control
|
||||
bool getPosNED(Vector3f &pos) const;
|
||||
|
||||
// return NED velocity in m/s
|
||||
void getVelNED(Vector3f &vel) const;
|
||||
|
||||
// This returns the specific forces in the NED frame
|
||||
void getAccelNED(Vector3f &accelNED) const;
|
||||
|
||||
// return body axis gyro bias estimates in rad/sec
|
||||
void getGyroBias(Vector3f &gyroBias) const;
|
||||
|
||||
// return body axis gyro scale factor estimates
|
||||
void getGyroScale(Vector3f &gyroScale) const;
|
||||
|
||||
// return tilt error convergence metric
|
||||
void getTiltError(float &ang) const;
|
||||
|
||||
// reset body axis gyro bias estimates
|
||||
void resetGyroBias(void);
|
||||
|
||||
// Resets the baro so that it reads zero at the current height
|
||||
// Resets the EKF height to zero
|
||||
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
|
||||
// Returns true if the height datum reset has been performed
|
||||
// If using a range finder for height no reset is performed and it returns false
|
||||
bool resetHeightDatum(void);
|
||||
|
||||
// Commands the EKF to not use GPS.
|
||||
// This command must be sent prior to arming as it will only be actioned when the filter is in static mode
|
||||
// This command is forgotten by the EKF each time it goes back into static mode (eg the vehicle disarms)
|
||||
// Returns 0 if command rejected
|
||||
// Returns 1 if attitude, vertical velocity and vertical position will be provided
|
||||
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
|
||||
uint8_t setInhibitGPS(void);
|
||||
|
||||
// return the horizontal speed limit in m/s set by optical flow sensor limits
|
||||
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
|
||||
void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const;
|
||||
|
||||
// return weighting of first IMU in blending function
|
||||
void getIMU1Weighting(float &ret) const;
|
||||
|
||||
// return the individual Z-accel bias estimates in m/s^2
|
||||
void getAccelZBias(float &zbias1, float &zbias2) const;
|
||||
|
||||
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
|
||||
void getWind(Vector3f &wind) const;
|
||||
|
||||
// return earth magnetic field estimates in measurement units / 1000
|
||||
void getMagNED(Vector3f &magNED) const;
|
||||
|
||||
// return body magnetic field estimates in measurement units / 1000
|
||||
void getMagXYZ(Vector3f &magXYZ) const;
|
||||
|
||||
// Return estimated magnetometer offsets
|
||||
// Return true if magnetometer offsets are valid
|
||||
bool getMagOffsets(Vector3f &magOffsets) const;
|
||||
|
||||
// Return the last calculated latitude, longitude and height in WGS-84
|
||||
// If a calculated location isn't available, return a raw GPS measurement
|
||||
// The status will return true if a calculation or raw measurement is available
|
||||
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
|
||||
bool getLLH(struct Location &loc) const;
|
||||
|
||||
// return the latitude and longitude and height used to set the NED origin
|
||||
// All NED positions calculated by the filter are relative to this location
|
||||
// Returns false if the origin has not been set
|
||||
bool getOriginLLH(struct Location &loc) const;
|
||||
|
||||
// set the latitude and longitude and height used to set the NED origin
|
||||
// All NED positions calcualted by the filter will be relative to this location
|
||||
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed)
|
||||
// Returns false if the filter has rejected the attempt to set the origin
|
||||
bool setOriginLLH(struct Location &loc);
|
||||
|
||||
// return estimated height above ground level
|
||||
// return false if ground height is not being estimated.
|
||||
bool getHAGL(float &HAGL) const;
|
||||
|
||||
// return the Euler roll, pitch and yaw angle in radians
|
||||
void getEulerAngles(Vector3f &eulers) const;
|
||||
|
||||
// return the transformation matrix from XYZ (body) to NED axes
|
||||
void getRotationBodyToNED(Matrix3f &mat) const;
|
||||
|
||||
// return the quaternions defining the rotation from NED to XYZ (body) axes
|
||||
void getQuaternion(Quaternion &quat) const;
|
||||
|
||||
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
|
||||
void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const;
|
||||
|
||||
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
|
||||
void getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const;
|
||||
|
||||
// should we use the compass? This is public so it can be used for
|
||||
// reporting via ahrs.use_compass()
|
||||
bool use_compass(void) const;
|
||||
|
||||
// write the raw optical flow measurements
|
||||
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
|
||||
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
|
||||
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
|
||||
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
|
||||
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
|
||||
void writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas);
|
||||
|
||||
// return data for debugging optical flow fusion
|
||||
void getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const;
|
||||
|
||||
// called by vehicle code to specify that a takeoff is happening
|
||||
// causes the EKF to compensate for expected barometer errors due to ground effect
|
||||
void setTakeoffExpected(bool val);
|
||||
|
||||
// called by vehicle code to specify that a touchdown is expected to happen
|
||||
// causes the EKF to compensate for expected barometer errors due to ground effect
|
||||
void setTouchdownExpected(bool val);
|
||||
|
||||
/*
|
||||
return the filter fault status as a bitmasked integer
|
||||
0 = quaternions are NaN
|
||||
1 = velocities are NaN
|
||||
2 = badly conditioned X magnetometer fusion
|
||||
3 = badly conditioned Y magnetometer fusion
|
||||
5 = badly conditioned Z magnetometer fusion
|
||||
6 = badly conditioned airspeed fusion
|
||||
7 = badly conditioned synthetic sideslip fusion
|
||||
7 = filter is not initialised
|
||||
*/
|
||||
void getFilterFaults(uint8_t &faults) const;
|
||||
|
||||
/*
|
||||
return filter timeout status as a bitmasked integer
|
||||
0 = position measurement timeout
|
||||
1 = velocity measurement timeout
|
||||
2 = height measurement timeout
|
||||
3 = magnetometer measurement timeout
|
||||
5 = unassigned
|
||||
6 = unassigned
|
||||
7 = unassigned
|
||||
7 = unassigned
|
||||
*/
|
||||
void getFilterTimeouts(uint8_t &timeouts) const;
|
||||
|
||||
/*
|
||||
return filter status flags
|
||||
*/
|
||||
void getFilterStatus(nav_filter_status &status) const;
|
||||
|
||||
// send an EKF_STATUS_REPORT message to GCS
|
||||
void send_status_report(mavlink_channel_t chan);
|
||||
|
||||
// provides the height limit to be observed by the control loops
|
||||
// returns false if no height limiting is required
|
||||
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
|
||||
bool getHeightControlLimit(float &height) const;
|
||||
|
||||
// provides the quaternion that was used by the INS calculation to rotate from the previous orientation to the orientaion at the current time step
|
||||
// returns a zero rotation quaternion if the INS calculation was not performed on that time step.
|
||||
Quaternion getDeltaQuaternion(void) const;
|
||||
|
||||
// return the amount of yaw angle change due to the last yaw angle reset in radians
|
||||
// returns true if a reset yaw angle has been updated and not queried
|
||||
// this function should not have more than one client
|
||||
bool getLastYawResetAngle(float &yawAng);
|
||||
|
||||
private:
|
||||
NavEKF2_core *core = nullptr;
|
||||
const AP_AHRS *_ahrs;
|
||||
AP_Baro &_baro;
|
||||
const RangeFinder &_rng;
|
||||
|
||||
// EKF Mavlink Tuneable Parameters
|
||||
AP_Int8 _enable; // zero to disable EKF2
|
||||
|
|
|
@ -22,13 +22,6 @@
|
|||
#define AP_NavEKF2_core
|
||||
|
||||
#include <AP_Math/AP_Math.h>
|
||||
#include <AP_InertialSensor/AP_InertialSensor.h>
|
||||
#include <AP_Baro/AP_Baro.h>
|
||||
#include <AP_Airspeed/AP_Airspeed.h>
|
||||
#include <AP_Compass/AP_Compass.h>
|
||||
#include <AP_NavEKF/AP_Nav_Common.h>
|
||||
#include <GCS_MAVLink/GCS_MAVLink.h>
|
||||
#include <AP_RangeFinder/AP_RangeFinder.h>
|
||||
#include "AP_NavEKF2.h"
|
||||
|
||||
// #define MATH_CHECK_INDEXES 1
|
||||
|
@ -225,10 +218,10 @@ public:
|
|||
// this function should not have more than one client
|
||||
bool getLastYawResetAngle(float &yawAng);
|
||||
|
||||
private:
|
||||
// Reference to the global EKF frontend for parameters
|
||||
NavEKF2 &frontend;
|
||||
|
||||
private:
|
||||
typedef float ftype;
|
||||
#if defined(MATH_CHECK_INDEXES) && (MATH_CHECK_INDEXES == 1)
|
||||
typedef VectorN<ftype,2> Vector2;
|
||||
|
@ -249,6 +242,7 @@ private:
|
|||
typedef VectorN<ftype,24> Vector24;
|
||||
typedef VectorN<ftype,25> Vector25;
|
||||
typedef VectorN<ftype,31> Vector31;
|
||||
typedef VectorN<ftype,28> Vector28;
|
||||
typedef VectorN<VectorN<ftype,3>,3> Matrix3;
|
||||
typedef VectorN<VectorN<ftype,24>,24> Matrix24;
|
||||
typedef VectorN<VectorN<ftype,34>,50> Matrix34_50;
|
||||
|
|
Loading…
Reference in New Issue