AP_HAL_ESP32: RCOutput: rework to properly support output groups

Each of the six available timers now handles two consecutive PWM output
channels. This also implements support for changing the group PWM
frequency in a similar manner to the ChibiOS HAL.
This commit is contained in:
Thomas Watson 2024-12-08 13:55:59 -06:00
parent da145e0909
commit b30e873c96
2 changed files with 168 additions and 108 deletions

View File

@ -12,7 +12,8 @@
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Charles "Silvanosky" Villard, David "Buzz" Bussenschutt and Andrey "ARg" Romanov
* Code by Charles "Silvanosky" Villard, David "Buzz" Bussenschutt,
* Andrey "ARg" Romanov, and Thomas "tpw_rules" Watson
*
*/
@ -29,9 +30,6 @@
#include "esp_log.h"
#define SERVO_TIMEBASE_RESOLUTION_HZ 1000000 // 1MHz, 1us per tick
#define SERVO_TIMEBASE_PERIOD 20000 // 20000 ticks, 20ms
#define TAG "RCOut"
extern const AP_HAL::HAL& hal;
@ -49,16 +47,56 @@ gpio_num_t outputs_pins[] = {};
#endif
/*
* The MCPWM (motor control PWM) peripheral is used to generate PWM signals for
* RC output. It is divided up into the following blocks:
* * The chip has SOC_MCPWM_GROUPS groups
* * Each group has SOC_MCPWM_TIMERS_PER_GROUP timers and operators
* * Each operator has SOC_MCPWM_COMPARATORS_PER_OPERATOR comparators and
* generators
* * Each generator can drive one GPIO pin
* Though there is more possible, we use the following capabilities:
* * Groups have an 8 bit integer prescaler from a 160MHz peripheral clock
* (the prescaler value defaults to 2)
* * Each timer has an 8 bit integer prescaler from the group clock, a 16 bit
* period, and is connected to exactly one operator
* * Each comparator in an operator acts on the corresponding timer's value and
* is connected to exactly one generator which drives exactly one GPIO pin
*
* Each MCPWM group (on ESP32/ESP32S3) gives us 3 independent "PWM groups"
* (in the STM32 sense) which contain 2 GPIO pins. The pins are assigned
* consecutively from the HAL_ESP32_RCOUT list. The frequency of each group can
* be controlled independently by changing that timer's period.
* * Running the timer at 1MHz allows 16-1000Hz with at least 1000 ticks per
* cycle and makes assigning the compare value easy
*
* MCPWM is only capable of PWM; DMA-based modes will require using the RMT
* peripheral.
*/
// each of our PWM groups has its own timer
#define MAX_GROUPS (SOC_MCPWM_GROUPS*SOC_MCPWM_TIMERS_PER_GROUP)
// we connect one timer to one operator
static_assert(SOC_MCPWM_OPERATORS_PER_GROUP >= SOC_MCPWM_TIMERS_PER_GROUP);
// and one generator to one comparator
static_assert(SOC_MCPWM_GENERATORS_PER_OPERATOR >= SOC_MCPWM_COMPARATORS_PER_OPERATOR);
#define SERVO_TIMEBASE_RESOLUTION_HZ 1000000 // 1MHz, 1us per tick, 2x80 prescaler
#define SERVO_DEFAULT_FREQ_HZ 50 // the rest of ArduPilot assumes this!
#define MAX_CHANNELS ARRAY_SIZE(outputs_pins)
static_assert(MAX_CHANNELS < 12, "overrunning _pending and safe_pwm"); // max for current chips
static_assert(MAX_CHANNELS < 32, "overrunning bitfields");
struct RCOutput::pwm_out RCOutput::pwm_group_list[MAX_CHANNELS];
#define NEEDED_GROUPS ((MAX_CHANNELS+SOC_MCPWM_COMPARATORS_PER_OPERATOR-1)/SOC_MCPWM_COMPARATORS_PER_OPERATOR)
static_assert(NEEDED_GROUPS <= MAX_GROUPS, "not enough hardware PWM groups");
RCOutput::pwm_group RCOutput::pwm_group_list[NEEDED_GROUPS];
RCOutput::pwm_chan RCOutput::pwm_chan_list[MAX_CHANNELS];
void RCOutput::init()
{
_max_channels = MAX_CHANNELS;
#ifdef CONFIG_IDF_TARGET_ESP32
// only on plain esp32
// 32 and 33 are special as they dont default to gpio, but can be if u disable their rtc setup:
@ -70,97 +108,100 @@ void RCOutput::init()
printf("RCOutput::init() - channels available: %d \n",(int)MAX_CHANNELS);
printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n");
const int MCPWM_CNT = SOC_MCPWM_OPERATORS_PER_GROUP*SOC_MCPWM_GENERATORS_PER_OPERATOR;
_initialized = true; // assume we are initialized, any error will call abort()
for (int i = 0; i < MAX_CHANNELS; ++i) {
RCOutput::pwm_group *curr_group = &pwm_group_list[0];
RCOutput::pwm_chan *curr_ch = &pwm_chan_list[0];
int chan = 0;
mcpwm_timer_handle_t h_timer;
mcpwm_oper_handle_t h_oper;
// loop through all the hardware blocks and set them up. returns when we run
// out of GPIO pins (each of which is assigned in order to a PWM channel)
for (int mcpwm_group_id=0; mcpwm_group_id<SOC_MCPWM_GROUPS; mcpwm_group_id++) {
for (int timer_num=0; timer_num<SOC_MCPWM_TIMERS_PER_GROUP; timer_num++) {
RCOutput::pwm_group &group = *curr_group++;
ESP_LOGI(TAG, "Initialize CH%02d", i+1);
// set up the group to use the default frequency
group.mcpwm_group_id = mcpwm_group_id;
group.rc_frequency = SERVO_DEFAULT_FREQ_HZ;
group.ch_mask = 0;
//Save struct infos
pwm_out &out = pwm_group_list[i];
out.group_id = i/MCPWM_CNT;
out.gpio_num = outputs_pins[i];
out.chan = i;
if (0 == i % MCPWM_CNT) {
mcpwm_timer_config_t timer_config = {
.group_id = out.group_id,
.clk_src = MCPWM_TIMER_CLK_SRC_DEFAULT,
// create timer with default tick rate and frequency, and configure
// it to constantly run
mcpwm_timer_config_t timer_config {
.group_id = mcpwm_group_id,
.clk_src = MCPWM_TIMER_CLK_SRC_PLL160M,
.resolution_hz = SERVO_TIMEBASE_RESOLUTION_HZ,
.count_mode = MCPWM_TIMER_COUNT_MODE_UP,
.period_ticks = SERVO_TIMEBASE_PERIOD,
.period_ticks = SERVO_TIMEBASE_RESOLUTION_HZ/SERVO_DEFAULT_FREQ_HZ,
};
ESP_ERROR_CHECK(mcpwm_new_timer(&timer_config, &group.h_timer));
ESP_ERROR_CHECK(mcpwm_timer_enable(group.h_timer));
ESP_ERROR_CHECK(mcpwm_timer_start_stop(group.h_timer, MCPWM_TIMER_START_NO_STOP));
ESP_LOGI(TAG, "Initialize timer");
ESP_ERROR_CHECK(mcpwm_new_timer(&timer_config, &h_timer));
out.freq = timer_config.resolution_hz/timer_config.period_ticks;
ESP_LOGI(TAG, "Enable and start timer");
ESP_ERROR_CHECK(mcpwm_timer_enable(h_timer));
ESP_ERROR_CHECK(mcpwm_timer_start_stop(h_timer, MCPWM_TIMER_START_NO_STOP));
}
out.h_timer = h_timer;
if (0 == i % SOC_MCPWM_GENERATORS_PER_OPERATOR) {
ESP_LOGI(TAG, "Initialize operator");
mcpwm_operator_config_t operator_config = {
.group_id = out.group_id, // operator must be in the same group to the timer
// create and connect operator
mcpwm_operator_config_t operator_config {
.group_id = mcpwm_group_id,
};
ESP_ERROR_CHECK(mcpwm_new_operator(&operator_config, &h_oper));
}
out.h_oper = h_oper;
ESP_ERROR_CHECK(mcpwm_new_operator(&operator_config, &group.h_oper));
ESP_ERROR_CHECK(mcpwm_operator_connect_timer(group.h_oper, group.h_timer));
ESP_LOGI(TAG, "Connect timer and operator");
ESP_ERROR_CHECK(mcpwm_operator_connect_timer(out.h_oper, out.h_timer));
for (int comparator_num=0; comparator_num<SOC_MCPWM_COMPARATORS_PER_OPERATOR; comparator_num++) {
RCOutput::pwm_chan &ch = *curr_ch++;
ESP_LOGI(TAG, "Create comparator and generator from the operator");
mcpwm_comparator_config_t comparator_config = {};
comparator_config.flags.update_cmp_on_tez = true;
// set up the output to be a part of the current group
ch.group = &group;
ch.gpio_num = outputs_pins[chan];
ch.value = 0;
group.ch_mask |= (1U << chan);
ESP_ERROR_CHECK(mcpwm_new_comparator(out.h_oper, &comparator_config, &out.h_cmpr));
mcpwm_generator_config_t generator_config = {
.gen_gpio_num = out.gpio_num,
// create and connect comparator
mcpwm_comparator_config_t comparator_config {
// grab new comparator value when timer is zero
.flags { .update_cmp_on_tez = true },
};
ESP_ERROR_CHECK(mcpwm_new_generator(out.h_oper, &generator_config, &out.h_gen));
ESP_ERROR_CHECK(mcpwm_new_comparator(group.h_oper, &comparator_config, &ch.h_cmpr));
ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(ch.h_cmpr, 0)); // zero the output
ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(out.h_cmpr, 1500));
out.value = 1500;
// create and connect generator
mcpwm_generator_config_t generator_config {
.gen_gpio_num = outputs_pins[chan],
};
ESP_ERROR_CHECK(mcpwm_new_generator(group.h_oper, &generator_config, &ch.h_gen));
ESP_LOGI(TAG, "Set generator action on timer and compare event");
// go high on counter empty
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(out.h_gen,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
// go low on compare threshold
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(out.h_gen,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, out.h_cmpr, MCPWM_GEN_ACTION_LOW)));
// configure it to go low on compare threshold (takes priority over going high)
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(ch.h_gen,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP,
ch.h_cmpr, MCPWM_GEN_ACTION_LOW)));
// and go high on counter empty
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(ch.h_gen,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP,
MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
if (++chan == MAX_CHANNELS) {
return; // finished all channels; done setting up the hardware
}
}
}
}
_initialized = true;
}
void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
if (!_initialized) {
return;
}
for (uint8_t i = 0; i < MAX_CHANNELS; i++) {
if (chmask & 1 << i) {
pwm_out &out = pwm_group_list[i];
ESP_ERROR_CHECK(mcpwm_timer_set_period( out.h_timer, SERVO_TIMEBASE_RESOLUTION_HZ/freq_hz));
out.freq = freq_hz;
for (auto &group : pwm_group_list) {
if ((group.ch_mask & chmask) != 0) { // group has channels to set?
// greater than 400 doesn't leave enough time for the down edge
uint16_t group_freq = constrain_value((int)freq_hz, 16, 400);
ESP_ERROR_CHECK(mcpwm_timer_set_period(group.h_timer, SERVO_TIMEBASE_RESOLUTION_HZ/group_freq));
group.rc_frequency = group_freq;
// disallow changing frequency of this group if it is greater than the default
if (group_freq > SERVO_DEFAULT_FREQ_HZ) {
fast_channel_mask |= group.ch_mask;
}
}
}
}
@ -170,17 +211,25 @@ void RCOutput::set_default_rate(uint16_t freq_hz)
if (!_initialized) {
return;
}
set_freq(0xFFFFFFFF, freq_hz);
for (auto &group : pwm_group_list) {
// only set frequency of groups without fast channels
if (!(group.ch_mask & fast_channel_mask) && group.ch_mask) {
set_freq(group.ch_mask, freq_hz);
// setting a high default frequency mustn't make channels fast
fast_channel_mask &= ~group.ch_mask;
}
}
}
uint16_t RCOutput::get_freq(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return 50;
return SERVO_DEFAULT_FREQ_HZ;
}
pwm_out &out = pwm_group_list[chan];
return out.freq;
pwm_group &group = *pwm_chan_list[chan].group;
return group.rc_frequency;
}
void RCOutput::enable_ch(uint8_t chan)
@ -189,9 +238,9 @@ void RCOutput::enable_ch(uint8_t chan)
return;
}
pwm_out &out = pwm_group_list[chan];
pwm_chan &ch = pwm_chan_list[chan];
// set output to high when timer == 0 like normal
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(out.h_gen,
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(ch.h_gen,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
}
@ -202,10 +251,10 @@ void RCOutput::disable_ch(uint8_t chan)
}
write(chan, 0);
pwm_out &out = pwm_group_list[chan];
pwm_chan &ch = pwm_chan_list[chan];
// set output to low when timer == 0, so the output is always low (after
// this cycle). conveniently avoids pulse truncation
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(out.h_gen,
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(ch.h_gen,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_LOW)));
}
@ -230,13 +279,13 @@ uint16_t RCOutput::read(uint8_t chan)
return 0;
}
pwm_out &out = pwm_group_list[chan];
return out.value;
pwm_chan &ch = pwm_chan_list[chan];
return ch.value;
}
void RCOutput::read(uint16_t *period_us, uint8_t len)
{
for (int i = 0; i < MIN(len, _max_channels); i++) {
for (int i = 0; i < MIN(len, MAX_CHANNELS); i++) {
period_us[i] = read(i);
}
}
@ -287,9 +336,13 @@ void RCOutput::write_int(uint8_t chan, uint16_t period_us)
period_us = safe_pwm[chan];
}
pwm_out &out = pwm_group_list[chan];
ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(out.h_cmpr, period_us));
out.value = period_us;
pwm_chan &ch = pwm_chan_list[chan];
const uint16_t max_period_us = SERVO_TIMEBASE_RESOLUTION_HZ/SERVO_DEFAULT_FREQ_HZ;
if (period_us > max_period_us) {
period_us = max_period_us;
}
ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(ch.h_cmpr, period_us));
ch.value = period_us;
}
/*

View File

@ -12,7 +12,8 @@
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Charles "Silvanosky" Villard, David "Buzz" Bussenschutt and Andrey "ARg" Romanov
* Code by Charles "Silvanosky" Villard, David "Buzz" Bussenschutt,
* Andrey "ARg" Romanov, and Thomas "tpw_rules" Watson'
*
*/
@ -99,32 +100,38 @@ public:
private:
struct pwm_out {
uint8_t chan;
uint8_t gpio_num;
uint8_t group_id;
int freq;
int value;
struct pwm_group {
// SDK objects for the group
uint8_t mcpwm_group_id;
mcpwm_timer_handle_t h_timer;
mcpwm_oper_handle_t h_oper;
mcpwm_cmpr_handle_t h_cmpr;
mcpwm_gen_handle_t h_gen;
uint32_t rc_frequency; // frequency in Hz
uint32_t ch_mask; // mask of channels in this group
};
struct pwm_chan {
// SDK objects for the channel
mcpwm_cmpr_handle_t h_cmpr;
mcpwm_gen_handle_t h_gen;
pwm_group *group; // associated group
uint8_t gpio_num; // associated GPIO number (always defined)
int value; // output value in microseconds
};
uint32_t fast_channel_mask;
void write_int(uint8_t chan, uint16_t period_us);
static pwm_out pwm_group_list[];
static pwm_group pwm_group_list[];
static pwm_chan pwm_chan_list[];
bool _corked;
uint32_t _pending_mask;
uint16_t _pending[12];
uint16_t safe_pwm[12]; // pwm to use when safety is on
uint16_t _max_channels;
// safety switch state
AP_HAL::Util::safety_state safety_state;
uint32_t safety_update_ms;