AC_AutoTune: clean up the update gain methods

This commit is contained in:
Bill Geyer 2022-01-16 18:13:59 -05:00 committed by Bill Geyer
parent d72f142ebe
commit b218f6e5d5
2 changed files with 128 additions and 110 deletions

View File

@ -109,38 +109,48 @@ AC_AutoTune_Heli::AC_AutoTune_Heli()
// initialize tests for each tune type // initialize tests for each tune type
void AC_AutoTune_Heli::test_init() void AC_AutoTune_Heli::test_init()
{ {
if (tune_type == RFF_UP) { switch (tune_type) {
case RFF_UP:
rate_ff_test_init(); rate_ff_test_init();
step_time_limit_ms = 10000; step_time_limit_ms = 10000;
} else if (tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP) { break;
// initialize start frequency and determine gain function when dwell test is used case MAX_GAINS:
case RP_UP:
case RD_UP:
// initialize start frequency
if (is_zero(start_freq)) { if (is_zero(start_freq)) {
if (test_phase[12] > 160.0f && test_phase[12] < 180.0f && tune_type == RP_UP) { if (tune_type == RP_UP) {
freq_cnt = 12; // continue using frequency where testing left off or RD_UP completed
curr_test_freq = test_freq[12]; if (test_phase[12] > 0.0f && test_phase[12] < 180.0f) {
freq_cnt = 12;
// start with freq found for sweep where phase was 180 deg
} else if (!is_zero(sweep.ph180_freq)) {
freq_cnt = 12;
test_freq[freq_cnt] = sweep.ph180_freq - 0.25f * 3.14159f * 2.0f;;
// otherwise start at min freq to step up in dwell frequency until phase > 160 deg
} else {
freq_cnt = 0;
test_freq[freq_cnt] = min_sweep_freq;
}
curr_test_freq = test_freq[freq_cnt];
start_freq = curr_test_freq; start_freq = curr_test_freq;
stop_freq = curr_test_freq; stop_freq = curr_test_freq;
} else if (method == 1 && tune_type == RP_UP) {
freq_cnt = 12; // MAX_GAINS and RD_UP both start with a sweep initially but if it has been completed then start dwells at the freq for 180 deg phase
test_freq[12] = sweep.maxgain_freq;
curr_test_freq = test_freq[12];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
} else if (!is_zero(max_rate_p.freq) && tune_type == RP_UP) {
freq_cnt = 12;
test_freq[12] = max_rate_p.freq;
curr_test_freq = test_freq[12];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
} else if (tune_type == MAX_GAINS || tune_type == RD_UP) {
start_freq = min_sweep_freq;
stop_freq = max_sweep_freq;
method = 0; //reset the method for rate D tuning.
} else { } else {
test_freq[0] = min_sweep_freq; if (!is_zero(sweep.ph180_freq)) {
curr_test_freq = test_freq[0]; freq_cnt = 12;
start_freq = curr_test_freq; test_freq[freq_cnt] = sweep.ph180_freq - 0.25f * 3.14159f * 2.0f;;
stop_freq = curr_test_freq; curr_test_freq = test_freq[freq_cnt];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
if (tune_type == MAX_GAINS) {
reset_maxgains_update_gain_variables();
}
} else {
start_freq = min_sweep_freq;
stop_freq = max_sweep_freq;
}
} }
} }
if (!is_equal(start_freq,stop_freq)) { if (!is_equal(start_freq,stop_freq)) {
@ -156,14 +166,21 @@ void AC_AutoTune_Heli::test_init()
// 4 seconds is added to allow aircraft to achieve start attitude. Then the time to conduct the dwells is added to it. // 4 seconds is added to allow aircraft to achieve start attitude. Then the time to conduct the dwells is added to it.
step_time_limit_ms = (uint32_t)(4000 + (float)(AUTOTUNE_DWELL_CYCLES + 2) * 1000.0f * M_2PI / start_freq); step_time_limit_ms = (uint32_t)(4000 + (float)(AUTOTUNE_DWELL_CYCLES + 2) * 1000.0f * M_2PI / start_freq);
} }
} else if (tune_type == SP_UP) { break;
// initialize start frequency when dwell test is used case SP_UP:
// initialize start frequency
if (is_zero(start_freq)) { if (is_zero(start_freq)) {
test_freq[0] = 1.5f * 3.14159f * 2.0f; if (!is_zero(sweep.maxgain_freq)) {
curr_test_freq = test_freq[0]; freq_cnt = 12;
test_accel_max = 0.0f; test_freq[freq_cnt] = sweep.maxgain_freq - 0.25f * 3.14159f * 2.0f;
start_freq = min_sweep_freq; curr_test_freq = test_freq[freq_cnt];
stop_freq = max_sweep_freq; start_freq = curr_test_freq;
stop_freq = curr_test_freq;
test_accel_max = 0.0f;
} else {
start_freq = min_sweep_freq;
stop_freq = max_sweep_freq;
}
} }
if (!is_equal(start_freq,stop_freq)) { if (!is_equal(start_freq,stop_freq)) {
@ -181,8 +198,9 @@ void AC_AutoTune_Heli::test_init()
// 1 seconds is added for a little buffer. Then the time to conduct the dwells is added to it. // 1 seconds is added for a little buffer. Then the time to conduct the dwells is added to it.
step_time_limit_ms = (uint32_t)(2000 + (float)(AUTOTUNE_DWELL_CYCLES + 7) * 1000.0f * M_2PI / start_freq); step_time_limit_ms = (uint32_t)(2000 + (float)(AUTOTUNE_DWELL_CYCLES + 7) * 1000.0f * M_2PI / start_freq);
} }
} else { break;
default:
break;
} }
start_angles = Vector3f(roll_cd, pitch_cd, desired_yaw_cd); // heli specific start_angles = Vector3f(roll_cd, pitch_cd, desired_yaw_cd); // heli specific
@ -192,18 +210,25 @@ void AC_AutoTune_Heli::test_init()
void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign) void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign)
{ {
if (tune_type == SP_UP) { if (tune_type == TUNE_COMPLETE) { return; }
angle_dwell_test_run(start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else if (tune_type == RFF_UP) { switch (tune_type) {
case RFF_UP:
rate_ff_test_run(AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD, AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS, dir_sign); rate_ff_test_run(AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD, AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS, dir_sign);
} else if (tune_type == RP_UP || tune_type == RD_UP) { break;
case RP_UP:
case RD_UP:
dwell_test_run(1, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]); dwell_test_run(1, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else if (tune_type == MAX_GAINS) { break;
case MAX_GAINS:
dwell_test_run(0, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]); dwell_test_run(0, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else if (tune_type == TUNE_COMPLETE) { break;
return; case SP_UP:
} else { angle_dwell_test_run(start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
break;
default:
step = UPDATE_GAINS; step = UPDATE_GAINS;
break;
} }
} }
@ -871,16 +896,7 @@ void AC_AutoTune_Heli::dwell_test_init(float start_frq, float filt_freq)
dwell_start_time_ms = 0.0f; dwell_start_time_ms = 0.0f;
settle_time = 200; settle_time = 200;
if (!is_equal(start_freq, stop_freq)) { if (!is_equal(start_freq, stop_freq)) {
sweep.ph180_freq = 0.0f; reset_sweep_variables();
sweep.ph180_gain = 0.0f;
sweep.ph180_phase = 0.0f;
sweep.ph270_freq = 0.0f;
sweep.ph270_gain = 0.0f;
sweep.ph270_phase = 0.0f;
sweep.maxgain_gain = 0.0f;
sweep.maxgain_freq = 0.0f;
sweep.maxgain_phase = 0.0f;
sweep.progress = 0;
curr_test_gain = 0.0f; curr_test_gain = 0.0f;
curr_test_phase = 0.0f; curr_test_phase = 0.0f;
} }
@ -1165,16 +1181,7 @@ void AC_AutoTune_Heli::angle_dwell_test_init(float start_frq, float filt_freq)
filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq); filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq);
if (!is_equal(start_freq, stop_freq)) { if (!is_equal(start_freq, stop_freq)) {
sweep.ph180_freq = 0.0f; reset_sweep_variables();
sweep.ph180_gain = 0.0f;
sweep.ph180_phase = 0.0f;
sweep.ph270_freq = 0.0f;
sweep.ph270_gain = 0.0f;
sweep.ph270_phase = 0.0f;
sweep.maxgain_gain = 0.0f;
sweep.maxgain_freq = 0.0f;
sweep.maxgain_phase = 0.0f;
sweep.progress = 0;
curr_test_gain = 0.0f; curr_test_gain = 0.0f;
curr_test_phase = 0.0f; curr_test_phase = 0.0f;
} }
@ -1554,16 +1561,13 @@ void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gai
float test_freq_incr = 0.25f * 3.14159f * 2.0f; float test_freq_incr = 0.25f * 3.14159f * 2.0f;
if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) {
if (frq_cnt == 0) { if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
tune_p = max_gain_p.max_allowed * 0.10f;
freq_cnt_max = 0;
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
rp_prev_good_frq_cnt = frq_cnt; rp_prev_good_frq_cnt = frq_cnt;
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) { } else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
if (phase[frq_cnt] - 360.0f < 180.0f) { if (phase[frq_cnt] - 360.0f < 180.0f) {
rp_prev_good_frq_cnt = frq_cnt; rp_prev_good_frq_cnt = frq_cnt;
} }
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) { } else if (frq_cnt > 1 && phase[frq_cnt] > 200.0f && !is_zero(phase[frq_cnt])) {
frq_cnt = 11; frq_cnt = 11;
} }
frq_cnt++; frq_cnt++;
@ -1574,10 +1578,8 @@ void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gai
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt]; curr_test_freq = freq[frq_cnt];
} }
} else if (is_equal(start_freq,stop_freq) && method == 2) { } else if (is_equal(start_freq,stop_freq)) {
if (is_zero(tune_p)) { if (phase[frq_cnt] > 180.0f) {
tune_p = 0.05f * max_gain_p.max_allowed;
} else if (phase[frq_cnt] > 180.0f) {
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr; curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq; freq[frq_cnt] = curr_test_freq;
} else if (phase[frq_cnt] < 160.0f) { } else if (phase[frq_cnt] < 160.0f) {
@ -1595,23 +1597,6 @@ void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gai
tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed); tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed);
} }
} }
} else if (is_equal(start_freq,stop_freq) && method == 1) {
if (is_zero(tune_p)) {
tune_p = 0.05f * max_gain_p.max_allowed;
rp_prev_gain = gain[frq_cnt];
} else if ((gain[frq_cnt] < rp_prev_gain || is_zero(rp_prev_gain)) && tune_p < 0.6f * max_gain_p.max_allowed) {
tune_p += 0.05f * max_gain_p.max_allowed;
rp_prev_gain = gain[frq_cnt];
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
rp_prev_gain = 0.0f;
tune_p -= 0.05f * max_gain_p.max_allowed;
tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed);
}
} }
if (counter == AUTOTUNE_SUCCESS_COUNT) { if (counter == AUTOTUNE_SUCCESS_COUNT) {
@ -1647,7 +1632,7 @@ void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gai
if (phase[frq_cnt] - 360.0f < 180.0f) { if (phase[frq_cnt] - 360.0f < 180.0f) {
rd_prev_good_frq_cnt = frq_cnt; rd_prev_good_frq_cnt = frq_cnt;
} }
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) { } else if (frq_cnt > 1 && phase[frq_cnt] > 200.0f && !is_zero(phase[frq_cnt])) {
frq_cnt = 11; frq_cnt = 11;
} }
frq_cnt++; frq_cnt++;
@ -1659,10 +1644,7 @@ void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gai
curr_test_freq = freq[frq_cnt]; curr_test_freq = freq[frq_cnt];
} }
} else if (is_equal(start_freq,stop_freq)) { } else if (is_equal(start_freq,stop_freq)) {
if (is_zero(tune_d)) { if (phase[frq_cnt] > 180.0f) {
tune_d = 0.05f * max_gain_d.max_allowed;
rd_prev_gain = gain[frq_cnt];
} else if (phase[frq_cnt] > 180.0f) {
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr; curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq; freq[frq_cnt] = curr_test_freq;
} else if (phase[frq_cnt] < 160.0f) { } else if (phase[frq_cnt] < 160.0f) {
@ -1685,6 +1667,7 @@ void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gai
} }
if (counter == AUTOTUNE_SUCCESS_COUNT) { if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test start_freq = 0.0f; //initializes next test that uses dwell test
reset_sweep_variables();
} else { } else {
start_freq = curr_test_freq; start_freq = curr_test_freq;
stop_freq = curr_test_freq; stop_freq = curr_test_freq;
@ -1698,21 +1681,19 @@ void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *ga
float gain_incr = 0.5f; float gain_incr = 0.5f;
if (!is_equal(start_freq,stop_freq)) { if (!is_equal(start_freq,stop_freq)) {
frq_cnt = 12; if (!is_zero(sweep.maxgain_freq)) {
if (!is_zero(sweep.ph180_freq)) { frq_cnt = 12;
// freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr; freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr;
// using 180 phase as max gain to start
freq_cnt_max = frq_cnt; freq_cnt_max = frq_cnt;
} else { } else {
freq[frq_cnt] = 4.0f * M_PI; frq_cnt = 1;
freq[frq_cnt] = min_sweep_freq;
freq_cnt_max = 0;
} }
curr_test_freq = freq[frq_cnt]; curr_test_freq = freq[frq_cnt];
} }
if (freq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (freq_cnt < 12 && is_equal(start_freq,stop_freq)) {
if (freq_cnt == 0) { if (gain[freq_cnt] > max_resp_gain && tune_p > AUTOTUNE_SP_MIN) {
freq_cnt_max = 0;
} else if (gain[freq_cnt] > max_resp_gain && tune_p > AUTOTUNE_SP_MIN) {
// exceeded max response gain already, reduce tuning gain to remain under max response gain // exceeded max response gain already, reduce tuning gain to remain under max response gain
tune_p -= gain_incr; tune_p -= gain_incr;
// force counter to stay on frequency // force counter to stay on frequency
@ -1722,13 +1703,11 @@ void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *ga
tune_p = AUTOTUNE_SP_MIN; tune_p = AUTOTUNE_SP_MIN;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
curr_test_freq = freq[0];
freq_cnt = 0;
} else if (gain[freq_cnt] > gain[freq_cnt_max]) { } else if (gain[freq_cnt] > gain[freq_cnt_max]) {
freq_cnt_max = freq_cnt; freq_cnt_max = freq_cnt;
phase_max = phase[freq_cnt]; phase_max = phase[freq_cnt];
sp_prev_gain = gain[freq_cnt]; sp_prev_gain = gain[freq_cnt];
} else if (gain[freq_cnt] > 0.0f && gain[freq_cnt] < 0.5f) { } else if (freq[freq_cnt] > max_sweep_freq || (gain[freq_cnt] > 0.0f && gain[freq_cnt] < 0.5f)) {
// must be past peak, continue on to determine angle p // must be past peak, continue on to determine angle p
freq_cnt = 11; freq_cnt = 11;
} }
@ -1756,8 +1735,6 @@ void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *ga
tune_p = AUTOTUNE_SP_MAX; tune_p = AUTOTUNE_SP_MAX;
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
curr_test_freq = freq[0];
freq_cnt = 0;
} }
} }
curr_test_freq = freq[freq_cnt]; curr_test_freq = freq[freq_cnt];
@ -1781,13 +1758,13 @@ void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *ga
tune_p = tune_p + gain_incr * adj_factor; tune_p = tune_p + gain_incr * adj_factor;
} }
counter = AUTOTUNE_SUCCESS_COUNT; counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and freq_cnt for next test
curr_test_freq = freq[0];
freq_cnt = 0;
} }
} }
if (counter == AUTOTUNE_SUCCESS_COUNT) { if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test start_freq = 0.0f; //initializes next test that uses dwell test
reset_sweep_variables();
curr_test_freq = freq[0];
freq_cnt = 0;
} else { } else {
start_freq = curr_test_freq; start_freq = curr_test_freq;
stop_freq = curr_test_freq; stop_freq = curr_test_freq;
@ -1869,6 +1846,7 @@ void AC_AutoTune_Heli::updating_max_gains(float *freq, float *gain, float *phase
curr_test_freq = freq[0]; curr_test_freq = freq[0];
frq_cnt = 0; frq_cnt = 0;
start_freq = 0.0f; //initializes next test that uses dwell test start_freq = 0.0f; //initializes next test that uses dwell test
reset_sweep_variables();
} else { } else {
if (frq_cnt == 3 && phase[2] >= 161.0f && !found_max_p) { if (frq_cnt == 3 && phase[2] >= 161.0f && !found_max_p) {
// phase greater than 161 deg won't allow max p to be found // phase greater than 161 deg won't allow max p to be found
@ -2036,6 +2014,25 @@ void AC_AutoTune_Heli::reset_update_gain_variables()
first_dir_complete = false; first_dir_complete = false;
// reset max gain variables // reset max gain variables
reset_maxgains_update_gain_variables();
// reset rd_up variables
rd_prev_good_frq_cnt = 0;
rd_prev_gain = 0.0f;
// reset rp_up variables
rp_prev_good_frq_cnt = 0;
// reset sp_up variables
phase_max = 0.0f;
sp_prev_gain = 0.0f;
find_peak = false;
}
// reset the max_gains update gain variables
void AC_AutoTune_Heli::reset_maxgains_update_gain_variables()
{
max_rate_p.freq = 0.0f; max_rate_p.freq = 0.0f;
max_rate_p.gain = 0.0f; max_rate_p.gain = 0.0f;
max_rate_p.phase = 0.0f; max_rate_p.phase = 0.0f;
@ -2050,6 +2047,21 @@ void AC_AutoTune_Heli::reset_update_gain_variables()
} }
// reset the max_gains update gain variables
void AC_AutoTune_Heli::reset_sweep_variables()
{
sweep.ph180_freq = 0.0f;
sweep.ph180_gain = 0.0f;
sweep.ph180_phase = 0.0f;
sweep.ph270_freq = 0.0f;
sweep.ph270_gain = 0.0f;
sweep.ph270_phase = 0.0f;
sweep.maxgain_gain = 0.0f;
sweep.maxgain_freq = 0.0f;
sweep.maxgain_phase = 0.0f;
sweep.progress = 0;
}
// set the tuning test sequence // set the tuning test sequence
void AC_AutoTune_Heli::set_tune_sequence() void AC_AutoTune_Heli::set_tune_sequence()
{ {

View File

@ -164,6 +164,12 @@ private:
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur // updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur
void updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d); void updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d);
// reset the max_gains update gain variables
void reset_maxgains_update_gain_variables();
// reset the sweep variables
void reset_sweep_variables();
uint8_t method; //0: determine freq, 1: use max gain method, 2: use phase 180 method uint8_t method; //0: determine freq, 1: use max gain method, 2: use phase 180 method
// updating rate FF variables // updating rate FF variables