mirror of https://github.com/ArduPilot/ardupilot
AP_Winch: add daiwa driver
This commit is contained in:
parent
738480884d
commit
b0eb375920
|
@ -1,5 +1,6 @@
|
|||
#include "AP_Winch.h"
|
||||
#include "AP_Winch_Servo.h"
|
||||
#include "AP_Winch_Daiwa.h"
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
|
@ -10,7 +11,7 @@ const AP_Param::GroupInfo AP_Winch::var_info[] = {
|
|||
// @DisplayName: Winch Type
|
||||
// @Description: Winch Type
|
||||
// @User: Standard
|
||||
// @Values: 0:None, 1:Servo
|
||||
// @Values: 0:None, 1:Servo, 2:Daiwa
|
||||
AP_GROUPINFO_FLAGS("_TYPE", 1, AP_Winch, config.type, (int8_t)WinchType::NONE, AP_PARAM_FLAG_ENABLE),
|
||||
|
||||
// @Param: _RATE_MAX
|
||||
|
@ -69,6 +70,9 @@ void AP_Winch::init()
|
|||
case WinchType::SERVO:
|
||||
backend = new AP_Winch_Servo(config);
|
||||
break;
|
||||
case WinchType::DAIWA:
|
||||
backend = new AP_Winch_Daiwa(config);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -25,6 +25,7 @@ class AP_Winch_Backend;
|
|||
class AP_Winch {
|
||||
friend class AP_Winch_Backend;
|
||||
friend class AP_Winch_Servo;
|
||||
friend class AP_Winch_Daiwa;
|
||||
|
||||
public:
|
||||
AP_Winch();
|
||||
|
@ -75,6 +76,7 @@ private:
|
|||
enum class WinchType {
|
||||
NONE = 0,
|
||||
SERVO = 1,
|
||||
DAIWA = 2
|
||||
};
|
||||
|
||||
// winch states
|
||||
|
|
|
@ -0,0 +1,227 @@
|
|||
#include <AP_Winch/AP_Winch_Daiwa.h>
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
// true if winch is healthy
|
||||
bool AP_Winch_Daiwa::healthy() const
|
||||
{
|
||||
// healthy if we have received data within 3 seconds
|
||||
return (AP_HAL::millis() - data_update_ms < 3000);
|
||||
}
|
||||
|
||||
void AP_Winch_Daiwa::init()
|
||||
{
|
||||
// initialise rc input and output
|
||||
init_input_and_output();
|
||||
|
||||
// initialise serial connection to winch
|
||||
const AP_SerialManager &serial_manager = AP::serialmanager();
|
||||
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Winch, 0);
|
||||
if (uart != nullptr) {
|
||||
// always use baudrate of 115200
|
||||
uart->begin(115200);
|
||||
}
|
||||
}
|
||||
|
||||
void AP_Winch_Daiwa::update()
|
||||
{
|
||||
// return immediately if no servo is assigned to control the winch
|
||||
if (!SRV_Channels::function_assigned(SRV_Channel::k_winch)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// read latest data from winch
|
||||
read_data_from_winch();
|
||||
|
||||
// read pilot input
|
||||
read_pilot_desired_rate();
|
||||
|
||||
// send outputs to winch
|
||||
control_winch();
|
||||
}
|
||||
|
||||
//send generator status
|
||||
void AP_Winch_Daiwa::send_status(const GCS_MAVLINK &channel)
|
||||
{
|
||||
// prepare status bitmask
|
||||
uint32_t status_bitmask = 0;
|
||||
if (healthy()) {
|
||||
status_bitmask |= MAV_WINCH_STATUS_HEALTHY;
|
||||
}
|
||||
if (latest.thread_end) {
|
||||
status_bitmask |= MAV_WINCH_STATUS_FULLY_RETRACTED;
|
||||
}
|
||||
if (latest.moving > 0) {
|
||||
status_bitmask |= MAV_WINCH_STATUS_MOVING;
|
||||
}
|
||||
if (latest.clutch > 0) {
|
||||
status_bitmask |= MAV_WINCH_STATUS_CLUTCH_ENGAGED;
|
||||
}
|
||||
|
||||
// convert speed percentage to absolute speed
|
||||
const float speed_ms = fabsf(config.rate_max) * (float)latest.speed_pct;
|
||||
|
||||
// send status
|
||||
mavlink_msg_winch_status_send(
|
||||
channel.get_chan(),
|
||||
AP_HAL::micros64(),
|
||||
latest.line_length,
|
||||
speed_ms,
|
||||
(float)latest.tension_corrected * 0.01f,
|
||||
latest.voltage,
|
||||
latest.current,
|
||||
latest.motor_temp,
|
||||
status_bitmask);
|
||||
}
|
||||
|
||||
// write log
|
||||
void AP_Winch_Daiwa::write_log()
|
||||
{
|
||||
AP::logger().Write_Winch(
|
||||
healthy(),
|
||||
latest.thread_end,
|
||||
latest.moving,
|
||||
latest.clutch,
|
||||
(uint8_t)config.control_mode,
|
||||
config.length_desired,
|
||||
get_current_length(),
|
||||
config.rate_desired,
|
||||
latest.tension_corrected,
|
||||
latest.voltage,
|
||||
constrain_int16(latest.motor_temp, INT8_MIN, INT8_MAX));
|
||||
}
|
||||
|
||||
// read incoming data from winch and update intermediate and latest structures
|
||||
void AP_Winch_Daiwa::read_data_from_winch()
|
||||
{
|
||||
// return immediately if serial port is not configured
|
||||
if (uart == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
// read any available characters from serial port and send to GCS
|
||||
int16_t nbytes = uart->available();
|
||||
while (nbytes-- > 0) {
|
||||
int16_t b = uart->read();
|
||||
|
||||
if ((b >= '0' && b <= '9') || (b >= 'A' && b <= 'F') || (b >= 'a' && b <= 'f')) {
|
||||
// add digits to buffer
|
||||
buff[buff_len] = b;
|
||||
buff_len++;
|
||||
if (buff_len >= buff_len_max) {
|
||||
buff_len = 0;
|
||||
parse_state = ParseState::WAITING_FOR_TIME;
|
||||
}
|
||||
} else if (b == ',' || b == '\r') {
|
||||
// comma or carriage return signals end of current value
|
||||
buff[buff_len] = '\0';
|
||||
long int ret = (int32_t)strtol(buff, nullptr, 16);
|
||||
if (ret >= (long)INT32_MAX || ret <= (long)INT32_MIN) {
|
||||
// failed to get valid number, throw away packet
|
||||
parse_state = ParseState::WAITING_FOR_TIME;
|
||||
} else {
|
||||
// parse number received and empty buffer
|
||||
buff_len = 0;
|
||||
switch (parse_state) {
|
||||
case ParseState::WAITING_FOR_TIME:
|
||||
intermediate.time_ms = (uint32_t)ret;
|
||||
parse_state = ParseState::WAITING_FOR_SPOOL;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_SPOOL:
|
||||
intermediate.line_length = (int32_t)ret * line_length_correction_factor;
|
||||
parse_state = ParseState::WAITING_FOR_TENSION1;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_TENSION1:
|
||||
intermediate.tension_uncorrected = (uint16_t)ret;
|
||||
parse_state = ParseState::WAITING_FOR_TENSION2;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_TENSION2:
|
||||
intermediate.tension_corrected = (uint16_t)ret;
|
||||
parse_state = ParseState::WAITING_FOR_THREAD_END;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_THREAD_END:
|
||||
intermediate.thread_end = (ret > 0);
|
||||
parse_state = ParseState::WAITING_FOR_MOVING;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_MOVING:
|
||||
intermediate.moving = constrain_int16(ret, 0, UINT8_MAX);
|
||||
parse_state = ParseState::WAITING_FOR_CLUTCH;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_CLUTCH:
|
||||
intermediate.clutch = constrain_int16(ret, 0, UINT8_MAX);
|
||||
parse_state = ParseState::WAITING_FOR_SPEED;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_SPEED:
|
||||
intermediate.speed_pct = constrain_int16(ret, 0, UINT8_MAX);
|
||||
parse_state = ParseState::WAITING_FOR_VOLTAGE;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_VOLTAGE:
|
||||
intermediate.voltage = (float)ret * 0.1f;
|
||||
parse_state = ParseState::WAITING_FOR_CURRENT;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_CURRENT:
|
||||
intermediate.current = (float)ret * 0.1f;
|
||||
parse_state = ParseState::WAITING_FOR_PCB_TEMP;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_PCB_TEMP:
|
||||
intermediate.pcb_temp = (float)ret * 0.1f;
|
||||
parse_state = ParseState::WAITING_FOR_MOTOR_TEMP;
|
||||
break;
|
||||
case ParseState::WAITING_FOR_MOTOR_TEMP:
|
||||
intermediate.motor_temp = (float)ret * 0.1f;
|
||||
// successfully parsed a complete message
|
||||
latest = intermediate;
|
||||
data_update_ms = AP_HAL::millis();
|
||||
parse_state = ParseState::WAITING_FOR_TIME;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// carriage return or unexpected characters
|
||||
buff_len = 0;
|
||||
parse_state = ParseState::WAITING_FOR_TIME;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// update pwm outputs to control winch
|
||||
void AP_Winch_Daiwa::control_winch()
|
||||
{
|
||||
uint32_t now_ms = AP_HAL::millis();
|
||||
float dt = (now_ms - control_update_ms) / 1000.0f;
|
||||
if (dt > 1.0f) {
|
||||
dt = 0.0f;
|
||||
}
|
||||
control_update_ms = now_ms;
|
||||
|
||||
// if real doing any control output trim value
|
||||
if (config.control_mode == AP_Winch::ControlMode::RELAXED) {
|
||||
// if not doing any control output release clutch and move winch to trim
|
||||
SRV_Channels::set_output_limit(SRV_Channel::k_winch_clutch, SRV_Channel::Limit::MAX);
|
||||
SRV_Channels::set_output_scaled(SRV_Channel::k_winch, 0);
|
||||
|
||||
// rate used for acceleration limiting reset to zero
|
||||
set_previous_rate(0.0f);
|
||||
return;
|
||||
}
|
||||
|
||||
// release clutch
|
||||
SRV_Channels::set_output_limit(SRV_Channel::k_winch_clutch, SRV_Channel::Limit::MIN);
|
||||
|
||||
// if doing position control, calculate position error to desired rate
|
||||
if ((config.control_mode == AP_Winch::ControlMode::POSITION) && healthy()) {
|
||||
float position_error = config.length_desired - latest.line_length;
|
||||
config.rate_desired = constrain_float(position_error * config.pos_p, -config.rate_max, config.rate_max);
|
||||
}
|
||||
|
||||
// apply acceleration limited to rate
|
||||
const float rate_limited = get_rate_limited_by_accel(config.rate_desired, dt);
|
||||
|
||||
// use linear interpolation to calculate output to move winch at desired rate
|
||||
int16_t scaled_output = 0;
|
||||
if (!is_zero(rate_limited)) {
|
||||
scaled_output = linear_interpolate(output_dz, 1000, fabsf(rate_limited), 0, config.rate_max) * (is_positive(rate_limited) ? 1.0f : -1.0f);
|
||||
}
|
||||
SRV_Channels::set_output_scaled(SRV_Channel::k_winch, scaled_output);
|
||||
}
|
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <AP_Winch/AP_Winch_Backend.h>
|
||||
#include <SRV_Channel/SRV_Channel.h>
|
||||
|
||||
class AP_Winch_Daiwa : public AP_Winch_Backend {
|
||||
public:
|
||||
|
||||
AP_Winch_Daiwa(struct AP_Winch::Backend_Config &_config) :
|
||||
AP_Winch_Backend(_config) { }
|
||||
|
||||
// true if winch is healthy
|
||||
bool healthy() const override;
|
||||
|
||||
// initialise the winch
|
||||
void init() override;
|
||||
|
||||
// control the winch
|
||||
void update() override;
|
||||
|
||||
// returns current length of line deployed
|
||||
float get_current_length() const override { return latest.line_length; }
|
||||
|
||||
// send status to ground station
|
||||
void send_status(const GCS_MAVLINK &channel) override;
|
||||
|
||||
// write log
|
||||
void write_log() override;
|
||||
|
||||
private:
|
||||
|
||||
// read incoming data from winch and update intermediate and latest structures
|
||||
void read_data_from_winch();
|
||||
|
||||
// update pwm outputs to control winch
|
||||
void control_winch();
|
||||
|
||||
static const uint8_t buff_len_max = 20; // buffer maximum length
|
||||
static const int16_t output_dz = 100; // output deadzone in scale of -1000 to +1000
|
||||
const float line_length_correction_factor = 0.0357f; // convert winch counter to meters
|
||||
|
||||
AP_HAL::UARTDriver *uart;
|
||||
char buff[buff_len_max]; // buffer holding latest data from winch
|
||||
uint8_t buff_len; // number of bytes in buff
|
||||
|
||||
// winch data
|
||||
// latest holds most recent complete data received
|
||||
// intermediate holds partial results currently being processed
|
||||
struct WinchData {
|
||||
uint32_t time_ms; // winch system time in milliseconds
|
||||
float line_length; // length of line released in meters
|
||||
uint16_t tension_uncorrected; // uncorrected tension in grams (0 to 1024)
|
||||
uint16_t tension_corrected; // corrected tension in grams (0 to 1024)
|
||||
bool thread_end; // true if end of thread has been detected
|
||||
uint8_t moving; // 0:stopped, 1:retracting line, 2:extending line, 3:clutch engaged, 4:zero reset
|
||||
uint8_t clutch; // 0:clutch off, 1:clutch engaged weakly, 2:clutch engaged strongly, motor can spin freely
|
||||
uint8_t speed_pct; // speed motor is moving as a percentage
|
||||
float voltage; // battery voltage (in voltes)
|
||||
float current; // current draw (in amps)
|
||||
float pcb_temp; // PCB temp in C
|
||||
float motor_temp; // motor temp in C
|
||||
} latest, intermediate;
|
||||
uint32_t data_update_ms; // system time that latest was last updated
|
||||
uint32_t control_update_ms; // last time control_winch was called
|
||||
|
||||
// parsing state
|
||||
enum class ParseState : uint8_t {
|
||||
WAITING_FOR_TIME = 0,
|
||||
WAITING_FOR_SPOOL,
|
||||
WAITING_FOR_TENSION1,
|
||||
WAITING_FOR_TENSION2,
|
||||
WAITING_FOR_THREAD_END,
|
||||
WAITING_FOR_MOVING,
|
||||
WAITING_FOR_CLUTCH,
|
||||
WAITING_FOR_SPEED,
|
||||
WAITING_FOR_VOLTAGE,
|
||||
WAITING_FOR_CURRENT,
|
||||
WAITING_FOR_PCB_TEMP,
|
||||
WAITING_FOR_MOTOR_TEMP
|
||||
} parse_state;
|
||||
};
|
Loading…
Reference in New Issue