AP_InertialSensor: always use FIFO on MPU6000

and enable fast sampling on ICM20608 if on SPI
This commit is contained in:
Andrew Tridgell 2016-11-09 11:33:05 +11:00
parent 96e42696b7
commit af1c5fd6d3
2 changed files with 152 additions and 59 deletions

View File

@ -1,5 +1,6 @@
#include <assert.h>
#include <utility>
#include <stdio.h>
#include <AP_HAL/AP_HAL.h>
@ -173,6 +174,16 @@ extern const AP_HAL::HAL& hal;
#define MPUREG_WHOAMI 0x75
// ICM2608 specific registers
#define ICMREG_ACCEL_CONFIG2 0x1D
#define ICM_ACC_DLPF_CFG_1046HZ_NOLPF 0x00
#define ICM_ACC_DLPF_CFG_218HZ 0x01
#define ICM_ACC_DLPF_CFG_99HZ 0x02
#define ICM_ACC_DLPF_CFG_44HZ 0x03
#define ICM_ACC_DLPF_CFG_21HZ 0x04
#define ICM_ACC_DLPF_CFG_10HZ 0x05
#define ICM_ACC_DLPF_CFG_5HZ 0x06
#define ICM_ACC_DLPF_CFG_420HZ 0x07
#define ICM_ACC_FCHOICE_B 0x08
/* this is an undocumented register which
if set incorrectly results in getting a 2.7m/s/s offset
@ -214,13 +225,8 @@ extern const AP_HAL::HAL& hal;
#define MPU6000_REV_D8 0x58 // 0101 1000
#define MPU6000_REV_D9 0x59 // 0101 1001
#define MPU6000_SAMPLE_SIZE 14
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
#define MPU6000_MAX_FIFO_SAMPLES 6
#else
#define MPU6000_MAX_FIFO_SAMPLES 3
#endif
#define MPU6000_SAMPLE_SIZE 12
#define MPU6000_MAX_FIFO_SAMPLES 16
#define MAX_DATA_READ (MPU6000_MAX_FIFO_SAMPLES * MPU6000_SAMPLE_SIZE)
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
@ -242,11 +248,9 @@ static const float GYRO_SCALE = (0.0174532f / 16.4f);
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
bool use_fifo,
enum Rotation rotation)
: AP_InertialSensor_Backend(imu)
, _use_fifo(use_fifo)
, _temp_filter(1000, 1)
, _temp_filter(10, 1)
, _dev(std::move(dev))
, _rotation(rotation)
{
@ -254,6 +258,9 @@ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu,
AP_InertialSensor_MPU6000::~AP_InertialSensor_MPU6000()
{
if (_fifo_buffer != nullptr) {
delete[] _fifo_buffer;
}
delete _auxiliary_bus;
}
@ -265,7 +272,7 @@ AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &i
return nullptr;
}
AP_InertialSensor_MPU6000 *sensor =
new AP_InertialSensor_MPU6000(imu, std::move(dev), true, rotation);
new AP_InertialSensor_MPU6000(imu, std::move(dev), rotation);
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
@ -287,7 +294,7 @@ AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &i
dev->set_read_flag(0x80);
sensor = new AP_InertialSensor_MPU6000(imu, std::move(dev), false, rotation);
sensor = new AP_InertialSensor_MPU6000(imu, std::move(dev), rotation);
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
@ -323,7 +330,7 @@ void AP_InertialSensor_MPU6000::_fifo_reset()
void AP_InertialSensor_MPU6000::_fifo_enable()
{
_register_write(MPUREG_FIFO_EN, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN |
BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN | BIT_TEMP_FIFO_EN);
BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN);
_fifo_reset();
hal.scheduler->delay(1);
}
@ -346,9 +353,8 @@ void AP_InertialSensor_MPU6000::start()
_register_write(MPUREG_PWR_MGMT_2, 0x00);
hal.scheduler->delay(1);
if (_use_fifo) {
_fifo_enable();
}
// always use FIFO
_fifo_enable();
// disable sensor filtering
_set_filter_register(256);
@ -410,6 +416,12 @@ void AP_InertialSensor_MPU6000::start()
// setup sensor rotations from probe()
set_gyro_orientation(_gyro_instance, _rotation);
set_accel_orientation(_accel_instance, _rotation);
// allocate fifo buffer
_fifo_buffer = new uint8_t[MAX_DATA_READ];
if (_fifo_buffer == nullptr) {
AP_HAL::panic("MPU6000: Unable to allocate FIFO buffer");
}
// start the timer process to read samples
_dev->register_periodic_callback(1000, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_MPU6000::_poll_data, bool));
@ -461,11 +473,8 @@ bool AP_InertialSensor_MPU6000::_data_ready()
*/
bool AP_InertialSensor_MPU6000::_poll_data()
{
if (_use_fifo) {
_read_fifo();
} else if (_data_ready()) {
_read_sample();
}
_read_fifo();
_read_temperature();
return true;
}
@ -474,7 +483,6 @@ void AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples)
for (uint8_t i = 0; i < n_samples; i++) {
uint8_t *data = samples + MPU6000_SAMPLE_SIZE * i;
Vector3f accel, gyro;
float temp;
bool fsync_set = false;
#if MPU6000_EXT_SYNC_ENABLE
@ -486,15 +494,11 @@ void AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples)
-int16_val(data, 2));
accel *= _accel_scale;
gyro = Vector3f(int16_val(data, 5),
int16_val(data, 4),
-int16_val(data, 6));
gyro = Vector3f(int16_val(data, 4),
int16_val(data, 3),
-int16_val(data, 5));
gyro *= GYRO_SCALE;
temp = int16_val(data, 3);
/* scaling/offset values from the datasheet */
temp = temp/340 + 36.53;
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
accel.rotate(ROTATION_PITCH_180_YAW_90);
gyro.rotate(ROTATION_PITCH_180_YAW_90);
@ -514,18 +518,56 @@ void AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples)
_notify_new_accel_raw_sample(_accel_instance, accel, AP_HAL::micros64(), fsync_set);
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
_temp_filtered = _temp_filter.apply(temp);
}
}
void AP_InertialSensor_MPU6000::_accumulate_fast_sampling(uint8_t *samples, uint8_t n_samples)
{
Vector3f accel;
Vector3f gyro;
for (uint8_t i = 0; i < n_samples; i++) {
uint8_t *data = samples + MPU6000_SAMPLE_SIZE * i;
accel += Vector3f(int16_val(data, 1),
int16_val(data, 0),
-int16_val(data, 2));
gyro += Vector3f(int16_val(data, 4),
int16_val(data, 3),
-int16_val(data, 5));
}
accel *= (_accel_scale / n_samples);
gyro *= GYRO_SCALE / n_samples;
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
accel.rotate(ROTATION_PITCH_180_YAW_90);
gyro.rotate(ROTATION_PITCH_180_YAW_90);
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
accel.rotate(ROTATION_YAW_270);
gyro.rotate(ROTATION_YAW_270);
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO
accel.rotate(ROTATION_PITCH_180_YAW_90);
gyro.rotate(ROTATION_PITCH_180_YAW_90);
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE
accel.rotate(ROTATION_YAW_90);
gyro.rotate(ROTATION_YAW_90);
#endif
_rotate_and_correct_accel(_accel_instance, accel);
_rotate_and_correct_gyro(_gyro_instance, gyro);
_notify_new_accel_raw_sample(_accel_instance, accel, AP_HAL::micros64(), false);
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
}
void AP_InertialSensor_MPU6000::_read_fifo()
{
uint8_t n_samples;
uint16_t bytes_read;
uint8_t rx[MAX_DATA_READ];
uint8_t *rx = _fifo_buffer;
static_assert(MAX_DATA_READ <= 100, "Too big to keep on stack");
//static_assert(MAX_DATA_READ <= 100, "Too big to keep on stack");
if (!_block_read(MPUREG_FIFO_COUNTH, rx, 2)) {
hal.console->printf("MPU60x0: error in fifo read\n");
@ -541,8 +583,8 @@ void AP_InertialSensor_MPU6000::_read_fifo()
}
if (n_samples > MPU6000_MAX_FIFO_SAMPLES) {
hal.console->printf("bytes_read = %u, n_samples %u > %u, dropping samples\n",
bytes_read, n_samples, MPU6000_MAX_FIFO_SAMPLES);
printf("bytes_read = %u, n_samples %u > %u, dropping samples\n",
bytes_read, n_samples, MPU6000_MAX_FIFO_SAMPLES);
/* Too many samples, do a FIFO RESET */
_fifo_reset();
@ -550,30 +592,33 @@ void AP_InertialSensor_MPU6000::_read_fifo()
}
if (!_block_read(MPUREG_FIFO_R_W, rx, n_samples * MPU6000_SAMPLE_SIZE)) {
hal.console->printf("MPU60x0: error in fifo read %u bytes\n",
n_samples * MPU6000_SAMPLE_SIZE);
printf("MPU60x0: error in fifo read %u bytes\n",
n_samples * MPU6000_SAMPLE_SIZE);
return;
}
_accumulate(rx, n_samples);
if (_fast_sampling) {
_accumulate_fast_sampling(rx, n_samples);
} else {
_accumulate(rx, n_samples);
}
}
void AP_InertialSensor_MPU6000::_read_sample()
void AP_InertialSensor_MPU6000::_read_temperature()
{
/* one register address followed by seven 2-byte registers */
struct PACKED {
uint8_t int_status;
uint8_t d[14];
} rx;
if (!_block_read(MPUREG_INT_STATUS, (uint8_t *) &rx, sizeof(rx))) {
if (++_error_count > 4) {
hal.console->printf("MPU60x0: error reading sample\n");
return;
}
uint32_t now = AP_HAL::millis();
if (now - _last_temp_read_ms < 100) {
// read at 10Hz
return;
}
uint8_t d[2];
if (_block_read(MPUREG_TEMP_OUT_H, d, 2)) {
float temp = int16_val(d, 0);
temp = temp/340 + 36.53;
_temp_filtered = _temp_filter.apply(temp);
_last_temp_read_ms = now;
}
_accumulate(rx.d, 1);
}
bool AP_InertialSensor_MPU6000::_block_read(uint8_t reg, uint8_t *buf,
@ -615,6 +660,15 @@ void AP_InertialSensor_MPU6000::_set_filter_register(uint16_t filter_hz)
filter = BITS_DLPF_CFG_98HZ;
} else {
filter = BITS_DLPF_CFG_256HZ_NOLPF2;
if (_is_icm_device) {
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
// this gives us 8kHz sampling
_fast_sampling = true;
} else {
// limit to 1kHz if not on SPI
filter = BITS_DLPF_CFG_188HZ;
}
}
}
#if MPU6000_EXT_SYNC_ENABLE
@ -623,6 +677,38 @@ void AP_InertialSensor_MPU6000::_set_filter_register(uint16_t filter_hz)
#endif
_register_write(MPUREG_CONFIG, filter);
if (!_is_icm_device) {
return;
}
if (_fast_sampling) {
// setup for 4kHz accels
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_FCHOICE_B);
return;
}
if (filter_hz == 0) {
filter = ICM_ACC_DLPF_CFG_1046HZ_NOLPF;
} else if (filter_hz <= 5) {
filter = ICM_ACC_DLPF_CFG_5HZ;
} else if (filter_hz <= 10) {
filter = ICM_ACC_DLPF_CFG_10HZ;
} else if (filter_hz <= 21) {
filter = ICM_ACC_DLPF_CFG_21HZ;
} else if (filter_hz <= 44) {
filter = ICM_ACC_DLPF_CFG_44HZ;
} else if (filter_hz <= 99) {
filter = ICM_ACC_DLPF_CFG_99HZ;
} else if (filter_hz <= 218) {
filter = ICM_ACC_DLPF_CFG_218HZ;
} else if (filter_hz <= 420) {
filter = ICM_ACC_DLPF_CFG_420HZ;
} else {
filter = ICM_ACC_DLPF_CFG_1046HZ_NOLPF;
}
_register_write(ICMREG_ACCEL_CONFIG2, filter);
}
/*

View File

@ -54,7 +54,6 @@ public:
private:
AP_InertialSensor_MPU6000(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
bool use_fifo,
enum Rotation rotation);
#if MPU6000_DEBUG
@ -74,9 +73,9 @@ private:
/* Read samples from FIFO (FIFO enabled) */
void _read_fifo();
/* Read a single sample (FIFO disabled) */
void _read_sample();
// read temperature data
void _read_temperature();
/* Check if there's data available by either reading DRDY pin or register */
bool _data_ready();
@ -90,13 +89,12 @@ private:
void _register_write(uint8_t reg, uint8_t val );
void _accumulate(uint8_t *samples, uint8_t n_samples);
void _accumulate_fast_sampling(uint8_t *samples, uint8_t n_samples);
// instance numbers of accel and gyro data
uint8_t _gyro_instance;
uint8_t _accel_instance;
const bool _use_fifo;
uint16_t _error_count;
float _temp_filtered;
@ -110,7 +108,16 @@ private:
AP_MPU6000_AuxiliaryBus *_auxiliary_bus;
// is this an ICM-20608?
bool _is_icm_device;
bool _is_icm_device:1;
// are we doing more than 1kHz sampling?
bool _fast_sampling:1;
// last time we read temperature
uint32_t _last_temp_read_ms;
// buffer for fifo read
uint8_t *_fifo_buffer;
};
class AP_MPU6000_AuxiliaryBusSlave : public AuxiliaryBusSlave