AP_InertialSensor_PX4: explicitly configure sensors, publish deltas

This commit is contained in:
Jonathan Challinger 2015-02-17 01:58:09 -08:00 committed by Andrew Tridgell
parent b5131b7b64
commit addf80b669
2 changed files with 186 additions and 22 deletions

View File

@ -22,6 +22,10 @@ AP_InertialSensor_PX4::AP_InertialSensor_PX4(AP_InertialSensor &imu) :
AP_InertialSensor_Backend(imu), AP_InertialSensor_Backend(imu),
_last_get_sample_timestamp(0) _last_get_sample_timestamp(0)
{ {
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
_delta_angle_accumulator[i].zero();
_delta_velocity_accumulator[i].zero();
}
} }
/* /*
@ -61,15 +65,77 @@ bool AP_InertialSensor_PX4::_init_sensor(void)
_num_gyro_instances = i+1; _num_gyro_instances = i+1;
_gyro_instance[i] = _imu.register_gyro(); _gyro_instance[i] = _imu.register_gyro();
} }
} }
if (_num_accel_instances == 0) { if (_num_accel_instances == 0) {
return false; return false;
} }
if (_num_gyro_instances == 0) { if (_num_gyro_instances == 0) {
return false; return false;
} }
_default_filter_hz = _default_filter(); for (uint8_t i=0; i<_num_gyro_instances; i++) {
int fd = _gyro_fd[i];
int devid = (ioctl(fd, DEVIOCGDEVICEID, 0) & 0x00FF0000)>>16;
// software LPF off
ioctl(fd, GYROIOCSLOWPASS, 0);
// 2000dps range
ioctl(fd, GYROIOCSRANGE, 2000);
switch(devid) {
case DRV_GYR_DEVTYPE_MPU6000:
// hardware LPF off
ioctl(fd, GYROIOCSHWLOWPASS, 256);
// khz sampling
ioctl(fd, GYROIOCSSAMPLERATE, 1000);
// 10ms queue depth
ioctl(fd, SENSORIOCSQUEUEDEPTH, 10);
break;
case DRV_GYR_DEVTYPE_L3GD20:
// hardware LPF as high as possible
ioctl(fd, GYROIOCSHWLOWPASS, 100);
// ~khz sampling
ioctl(fd, GYROIOCSSAMPLERATE, 800);
// 10ms queue depth
ioctl(fd, SENSORIOCSQUEUEDEPTH, 8);
break;
default:
break;
}
}
for (uint8_t i=0; i<_num_accel_instances; i++) {
int fd = _accel_fd[i];
int devid = (ioctl(fd, DEVIOCGDEVICEID, 0) & 0x00FF0000)>>16;
// software LPF off
ioctl(fd, ACCELIOCSLOWPASS, 0);
// 16g range
ioctl(fd, ACCELIOCSRANGE, 16);
switch(devid) {
case DRV_ACC_DEVTYPE_MPU6000:
// hardware LPF off
ioctl(fd, ACCELIOCSHWLOWPASS, 256);
// khz sampling
ioctl(fd, ACCELIOCSSAMPLERATE, 1000);
// 10ms queue depth
ioctl(fd, SENSORIOCSQUEUEDEPTH, 10);
break;
case DRV_ACC_DEVTYPE_LSM303D:
// hardware LPF to ~1/10th sample rate for antialiasing
ioctl(fd, ACCELIOCSHWLOWPASS, 194);
// ~khz sampling
ioctl(fd, ACCELIOCSSAMPLERATE, 1600);
ioctl(fd,SENSORIOCSPOLLRATE, 1600);
// 10ms queue depth
ioctl(fd, SENSORIOCSQUEUEDEPTH, 16);
break;
default:
break;
}
}
_set_filter_frequency(_imu.get_filter()); _set_filter_frequency(_imu.get_filter());
#if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
@ -90,13 +156,25 @@ bool AP_InertialSensor_PX4::_init_sensor(void)
void AP_InertialSensor_PX4::_set_filter_frequency(uint8_t filter_hz) void AP_InertialSensor_PX4::_set_filter_frequency(uint8_t filter_hz)
{ {
if (filter_hz == 0) { if (filter_hz == 0) {
filter_hz = _default_filter_hz; filter_hz = _default_filter();
} }
for (uint8_t i=0; i<_num_gyro_instances; i++) { for (uint8_t i=0; i<_num_gyro_instances; i++) {
ioctl(_gyro_fd[i], GYROIOCSLOWPASS, filter_hz); int samplerate = ioctl(_gyro_fd[i], GYROIOCGSAMPLERATE, 0);
if(samplerate < 100 || samplerate > 2000) {
// sample rate doesn't seem sane, turn off filter
_gyro_filter[i].set_cutoff_frequency(0, 0);
} else {
_gyro_filter[i].set_cutoff_frequency(samplerate, filter_hz);
}
} }
for (uint8_t i=0; i<_num_accel_instances; i++) { for (uint8_t i=0; i<_num_accel_instances; i++) {
ioctl(_accel_fd[i], ACCELIOCSLOWPASS, filter_hz); int samplerate = ioctl(_accel_fd[i], ACCELIOCGSAMPLERATE, 0);
if(samplerate < 100 || samplerate > 2000) {
// sample rate doesn't seem sane, turn off filter
_accel_filter[i].set_cutoff_frequency(0, 0);
} else {
_accel_filter[i].set_cutoff_frequency(samplerate, filter_hz);
}
} }
} }
@ -110,7 +188,8 @@ bool AP_InertialSensor_PX4::update(void)
// calling _publish_accel sets the sensor healthy, // calling _publish_accel sets the sensor healthy,
// so we only want to do this if we have new data from it // so we only want to do this if we have new data from it
if (_last_accel_timestamp[k] != _last_accel_update_timestamp[k]) { if (_last_accel_timestamp[k] != _last_accel_update_timestamp[k]) {
_publish_accel(_accel_instance[k], accel); _publish_accel(_accel_instance[k], accel, false);
_publish_delta_velocity(_accel_instance[k], _delta_velocity_accumulator[k]);
_last_accel_update_timestamp[k] = _last_accel_timestamp[k]; _last_accel_update_timestamp[k] = _last_accel_timestamp[k];
} }
} }
@ -120,39 +199,110 @@ bool AP_InertialSensor_PX4::update(void)
// calling _publish_accel sets the sensor healthy, // calling _publish_accel sets the sensor healthy,
// so we only want to do this if we have new data from it // so we only want to do this if we have new data from it
if (_last_gyro_timestamp[k] != _last_gyro_update_timestamp[k]) { if (_last_gyro_timestamp[k] != _last_gyro_update_timestamp[k]) {
_publish_gyro(_gyro_instance[k], gyro); _publish_gyro(_gyro_instance[k], gyro, false);
_publish_delta_angle(_gyro_instance[k], _delta_angle_accumulator[k]);
_last_gyro_update_timestamp[k] = _last_gyro_timestamp[k]; _last_gyro_update_timestamp[k] = _last_gyro_timestamp[k];
} }
} }
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
_delta_angle_accumulator[i].zero();
_delta_velocity_accumulator[i].zero();
}
if (_last_filter_hz != _imu.get_filter()) { if (_last_filter_hz != _imu.get_filter()) {
_set_filter_frequency(_imu.get_filter()); _set_filter_frequency(_imu.get_filter());
_last_filter_hz = _imu.get_filter(); _last_filter_hz = _imu.get_filter();
} }
return true; return true;
} }
void AP_InertialSensor_PX4::_get_sample(void) void AP_InertialSensor_PX4::_new_accel_sample(uint8_t i, accel_report &accel_report)
{
Vector3f accel = Vector3f(accel_report.x, accel_report.y, accel_report.z);
uint8_t frontend_instance = _accel_instance[i];
// apply corrections
_rotate_and_correct_accel(frontend_instance, accel);
// apply filter for control path
_accel_in[i] = _accel_filter[i].apply(accel);
// compute time since last sample
float dt = (accel_report.timestamp - _last_accel_timestamp[i]) * 1.0e-6f;
// compute delta velocity
Vector3f delVel = Vector3f(accel.x, accel.y, accel.z) * dt;
// integrate delta velocity accumulator
_delta_velocity_accumulator[i] += delVel;
// save last timestamp
_last_accel_timestamp[i] = accel_report.timestamp;
// report error count
_set_accel_error_count(frontend_instance, accel_report.error_count);
}
void AP_InertialSensor_PX4::_new_gyro_sample(uint8_t i, gyro_report &gyro_report)
{
Vector3f gyro = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z);
uint8_t frontend_instance = _gyro_instance[i];
// apply corrections
_rotate_and_correct_gyro(frontend_instance, gyro);
// apply filter for control path
_gyro_in[i] = _gyro_filter[i].apply(gyro);
// compute time since last sample - not more than 50ms
float dt = min((gyro_report.timestamp - _last_gyro_timestamp[i]) * 1.0e-6f, 0.05f);
// compute delta angle
Vector3f delAng = (gyro+_last_gyro[i]) * 0.5f * dt;
/* compute coning correction
* see page 26 of:
* Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation
* Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf
* see also examples/coning.py
*/
Vector3f delConing = ((_delta_angle_accumulator[i]+_last_delAng[i]*(1.0f/6.0f)) % delAng) * 0.5f;
// integrate delta angle accumulator
// the angles and coning corrections are accumulated separately in the
// referenced paper, but in simulation little difference was found between
// integrating together and integrating separately (see examples/coning.py)
_delta_angle_accumulator[i] += delAng + delConing;
// save previous delta angle for coning correction
_last_delAng[i] = delAng;
_last_gyro[i] = gyro;
// save last timestamp
_last_gyro_timestamp[i] = gyro_report.timestamp;
// report error count
_set_gyro_error_count(_gyro_instance[i], gyro_report.error_count);
}
void AP_InertialSensor_PX4::_get_sample()
{ {
for (uint8_t i=0; i<_num_accel_instances; i++) { for (uint8_t i=0; i<_num_accel_instances; i++) {
struct accel_report accel_report; struct accel_report accel_report;
while (_accel_fd[i] != -1 && while (_accel_fd[i] != -1 &&
::read(_accel_fd[i], &accel_report, sizeof(accel_report)) == sizeof(accel_report) && ::read(_accel_fd[i], &accel_report, sizeof(accel_report)) == sizeof(accel_report) &&
accel_report.timestamp != _last_accel_timestamp[i]) { accel_report.timestamp != _last_accel_timestamp[i]) {
_accel_in[i] = Vector3f(accel_report.x, accel_report.y, accel_report.z); _new_accel_sample(i, accel_report);
_last_accel_timestamp[i] = accel_report.timestamp;
_set_accel_error_count(_accel_instance[i], accel_report.error_count);
} }
} }
for (uint8_t i=0; i<_num_gyro_instances; i++) { for (uint8_t i=0; i<_num_gyro_instances; i++) {
struct gyro_report gyro_report; struct gyro_report gyro_report;
while (_gyro_fd[i] != -1 && while (_gyro_fd[i] != -1 &&
::read(_gyro_fd[i], &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) && ::read(_gyro_fd[i], &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) &&
gyro_report.timestamp != _last_gyro_timestamp[i]) { gyro_report.timestamp != _last_gyro_timestamp[i]) {
_gyro_in[i] = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z); _new_gyro_sample(i, gyro_report);
_last_gyro_timestamp[i] = gyro_report.timestamp;
_set_gyro_error_count(_gyro_instance[i], gyro_report.error_count);
} }
} }
_last_get_sample_timestamp = hal.scheduler->micros64(); _last_get_sample_timestamp = hal.scheduler->micros64();

View File

@ -13,6 +13,9 @@
#include <uORB/uORB.h> #include <uORB/uORB.h>
#include <uORB/topics/sensor_combined.h> #include <uORB/topics/sensor_combined.h>
#include <Filter.h>
#include <LowPassFilter2p.h>
class AP_InertialSensor_PX4 : public AP_InertialSensor_Backend class AP_InertialSensor_PX4 : public AP_InertialSensor_Backend
{ {
public: public:
@ -41,9 +44,11 @@ private:
uint64_t _last_get_sample_timestamp; uint64_t _last_get_sample_timestamp;
uint64_t _last_sample_timestamp; uint64_t _last_sample_timestamp;
void _new_accel_sample(uint8_t i, accel_report &accel_report);
void _new_gyro_sample(uint8_t i, gyro_report &gyro_report);
// support for updating filter at runtime // support for updating filter at runtime
uint8_t _last_filter_hz; uint8_t _last_filter_hz;
uint8_t _default_filter_hz;
void _set_filter_frequency(uint8_t filter_hz); void _set_filter_frequency(uint8_t filter_hz);
@ -58,6 +63,15 @@ private:
// from the backend indexes // from the backend indexes
uint8_t _accel_instance[INS_MAX_INSTANCES]; uint8_t _accel_instance[INS_MAX_INSTANCES];
uint8_t _gyro_instance[INS_MAX_INSTANCES]; uint8_t _gyro_instance[INS_MAX_INSTANCES];
// Low Pass filters for gyro and accel
LowPassFilter2pVector3f _accel_filter[INS_MAX_INSTANCES];
LowPassFilter2pVector3f _gyro_filter[INS_MAX_INSTANCES];
Vector3f _delta_angle_accumulator[INS_MAX_INSTANCES];
Vector3f _delta_velocity_accumulator[INS_MAX_INSTANCES];
Vector3f _last_delAng[INS_MAX_INSTANCES];
Vector3f _last_gyro[INS_MAX_INSTANCES];
}; };
#endif // CONFIG_HAL_BOARD #endif // CONFIG_HAL_BOARD
#endif // __AP_INERTIAL_SENSOR_PX4_H__ #endif // __AP_INERTIAL_SENSOR_PX4_H__