mirror of https://github.com/ArduPilot/ardupilot
AR_PosControl: rover position controller
This commit is contained in:
parent
8fcefb59b1
commit
abc7bd446a
|
@ -0,0 +1,389 @@
|
|||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "AR_PosControl.h"
|
||||
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
#include <AP_Math/AP_Math.h>
|
||||
#include <AP_AHRS/AP_AHRS.h>
|
||||
#include <AP_Logger/AP_Logger.h>
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
#include <AC_Avoidance/AC_Avoid.h>
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
#define AR_POSCON_TIMEOUT_MS 100 // timeout after 0.1 sec
|
||||
#define AR_POSCON_POS_P 0.2f // default position P gain
|
||||
#define AR_POSCON_VEL_P 1.0f // default velocity P gain
|
||||
#define AR_POSCON_VEL_I 0.2f // default velocity I gain
|
||||
#define AR_POSCON_VEL_D 0.0f // default velocity D gain
|
||||
#define AR_POSCON_VEL_FF 0.0f // default velocity FF gain
|
||||
#define AR_POSCON_VEL_IMAX 1.0f // default velocity IMAX
|
||||
#define AR_POSCON_VEL_FILT 5.0f // default velocity filter
|
||||
#define AR_POSCON_VEL_FILT_D 5.0f // default velocity D term filter
|
||||
#define AR_POSCON_DT 0.02f // default dt for PID controllers
|
||||
|
||||
const AP_Param::GroupInfo AR_PosControl::var_info[] = {
|
||||
|
||||
// @Param: _POS_P
|
||||
// @DisplayName: Position controller P gain
|
||||
// @Description: Position controller P gain. Converts the distance to the target location into a desired speed which is then passed to the loiter latitude rate controller
|
||||
// @Range: 0.500 2.000
|
||||
// @User: Standard
|
||||
AP_SUBGROUPINFO(_p_pos, "_POS_", 1, AR_PosControl, AC_P_2D),
|
||||
|
||||
// @Param: _VEL_P
|
||||
// @DisplayName: Velocity (horizontal) P gain
|
||||
// @Description: Velocity (horizontal) P gain. Converts the difference between desired and actual velocity to a target acceleration
|
||||
// @Range: 0.1 6.0
|
||||
// @Increment: 0.1
|
||||
// @User: Advanced
|
||||
|
||||
// @Param: _VEL_I
|
||||
// @DisplayName: Velocity (horizontal) I gain
|
||||
// @Description: Velocity (horizontal) I gain. Corrects long-term difference between desired and actual velocity to a target acceleration
|
||||
// @Range: 0.02 1.00
|
||||
// @Increment: 0.01
|
||||
// @User: Advanced
|
||||
|
||||
// @Param: _VEL_D
|
||||
// @DisplayName: Velocity (horizontal) D gain
|
||||
// @Description: Velocity (horizontal) D gain. Corrects short-term changes in velocity
|
||||
// @Range: 0.00 1.00
|
||||
// @Increment: 0.001
|
||||
// @User: Advanced
|
||||
|
||||
// @Param: _VEL_IMAX
|
||||
// @DisplayName: Velocity (horizontal) integrator maximum
|
||||
// @Description: Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output
|
||||
// @Range: 0 4500
|
||||
// @Increment: 10
|
||||
// @Units: cm/s/s
|
||||
// @User: Advanced
|
||||
|
||||
// @Param: _VEL_FLTE
|
||||
// @DisplayName: Velocity (horizontal) input filter
|
||||
// @Description: Velocity (horizontal) input filter. This filter (in Hz) is applied to the input for P and I terms
|
||||
// @Range: 0 100
|
||||
// @Units: Hz
|
||||
// @User: Advanced
|
||||
|
||||
// @Param: _VEL_FLTD
|
||||
// @DisplayName: Velocity (horizontal) input filter
|
||||
// @Description: Velocity (horizontal) input filter. This filter (in Hz) is applied to the input for D term
|
||||
// @Range: 0 100
|
||||
// @Units: Hz
|
||||
// @User: Advanced
|
||||
|
||||
// @Param: _VEL_FF
|
||||
// @DisplayName: Velocity (horizontal) feed forward gain
|
||||
// @Description: Velocity (horizontal) feed forward gain. Converts the difference between desired velocity to a target acceleration
|
||||
// @Range: 0 6
|
||||
// @Increment: 0.01
|
||||
// @User: Advanced
|
||||
AP_SUBGROUPINFO(_pid_vel, "_VEL_", 2, AR_PosControl, AC_PID_2D),
|
||||
|
||||
AP_GROUPEND
|
||||
};
|
||||
|
||||
AR_PosControl::AR_PosControl(AR_AttitudeControl& atc) :
|
||||
_atc(atc),
|
||||
_p_pos(AR_POSCON_POS_P, AR_POSCON_DT),
|
||||
_pid_vel(AR_POSCON_VEL_P, AR_POSCON_VEL_I, AR_POSCON_VEL_D, AR_POSCON_VEL_FF, AR_POSCON_VEL_IMAX, AR_POSCON_VEL_FILT, AR_POSCON_VEL_FILT_D, AR_POSCON_DT)
|
||||
{
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
}
|
||||
|
||||
// update navigation
|
||||
void AR_PosControl::update(float dt)
|
||||
{
|
||||
// exit immediately if no current location, destination or disarmed
|
||||
Vector2f curr_pos_NE;
|
||||
Vector3f curr_vel_NED;
|
||||
if (!hal.util->get_soft_armed() || !AP::ahrs().get_relative_position_NE_origin(curr_pos_NE) ||
|
||||
!AP::ahrs().get_velocity_NED(curr_vel_NED)) {
|
||||
_desired_speed = _atc.get_desired_speed_accel_limited(0.0f, dt);
|
||||
_desired_lat_accel = 0.0f;
|
||||
_desired_turn_rate_rads = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
// check for ekf xy position reset
|
||||
handle_ekf_xy_reset();
|
||||
|
||||
// if no recent calls reset velocity controller
|
||||
if (!is_active()) {
|
||||
_pid_vel.reset_I();
|
||||
_pid_vel.reset_filter();
|
||||
}
|
||||
_last_update_ms = AP_HAL::millis();
|
||||
|
||||
// update P, PID object's dt
|
||||
_p_pos.set_dt(dt);
|
||||
_pid_vel.set_dt(dt);
|
||||
|
||||
// calculate position error and convert to desired velocity
|
||||
Vector2f des_vel_NE;
|
||||
if (_pos_target_valid) {
|
||||
Vector2p pos_target = _pos_target;
|
||||
des_vel_NE = _p_pos.update_all(pos_target.x, pos_target.y, curr_pos_NE);
|
||||
}
|
||||
|
||||
// calculation velocity error
|
||||
if (_vel_target_valid) {
|
||||
// add target velocity to desired velocity from position error
|
||||
des_vel_NE += _vel_target;
|
||||
}
|
||||
|
||||
// limit velocity to maximum speed
|
||||
des_vel_NE.limit_length(get_speed_max());
|
||||
|
||||
// Limit the velocity to prevent fence violations
|
||||
bool backing_up = false;
|
||||
AC_Avoid *avoid = AP::ac_avoid();
|
||||
if (avoid != nullptr) {
|
||||
Vector3f vel_3d_cms{des_vel_NE.x * 100.0f, des_vel_NE.y * 100.0f, 0.0f};
|
||||
const float accel_max_cmss = MIN(_accel_max, _lat_accel_max) * 100.0;
|
||||
avoid->adjust_velocity(vel_3d_cms, backing_up, _p_pos.kP(), accel_max_cmss, _p_pos.kP(), accel_max_cmss, dt);
|
||||
des_vel_NE.x = vel_3d_cms.x * 0.01;
|
||||
des_vel_NE.y = vel_3d_cms.y * 0.01;
|
||||
}
|
||||
|
||||
// calculate desired acceleration
|
||||
// To-Do: fixup _limit_vel used below
|
||||
Vector2f des_accel_NE = _pid_vel.update_all(des_vel_NE, curr_vel_NED.xy(), _limit_vel);
|
||||
if (_accel_target_valid) {
|
||||
des_accel_NE += _accel_target;
|
||||
}
|
||||
|
||||
// convert desired acceleration to desired forward-back speed, desired lateral speed and desired turn rate
|
||||
|
||||
// rotate acceleration into body frame using current heading
|
||||
const Vector2f des_accel_FR = AP::ahrs().earth_to_body2D(des_accel_NE);
|
||||
|
||||
// calculate minimum turn speed which is the max speed the vehicle could turn through the corner
|
||||
// given the vehicle's turn radius and half its max lateral acceleration
|
||||
// todo: remove MAX of zero when safe_sqrt fixed
|
||||
float turn_speed_min = MAX(safe_sqrt(_atc.get_turn_lat_accel_max() * 0.5 * _turn_radius), 0);
|
||||
|
||||
// rotate target velocity from earth-frame to body frame
|
||||
const Vector2f des_vel_FR = AP::ahrs().earth_to_body2D(des_vel_NE);
|
||||
|
||||
// desired speed is normally the forward component (only) of the target velocity
|
||||
// but we do not let it fall below the minimum turn speed unless the vehicle is slowing down
|
||||
const float abs_des_speed_min = MIN(des_vel_NE.length(), turn_speed_min);
|
||||
float des_speed;
|
||||
if (_reversed != backing_up) {
|
||||
// if reversed or backing up desired speed will be negative
|
||||
des_speed = MIN(-abs_des_speed_min, des_vel_FR.x);
|
||||
} else {
|
||||
des_speed = MAX(abs_des_speed_min, des_vel_FR.x);
|
||||
}
|
||||
_desired_speed = _atc.get_desired_speed_accel_limited(des_speed, dt);
|
||||
|
||||
// calculate turn rate from desired lateral acceleration
|
||||
_desired_lat_accel = des_accel_FR.y;
|
||||
_desired_turn_rate_rads = _atc.get_turn_rate_from_lat_accel(_desired_lat_accel, _desired_speed);
|
||||
}
|
||||
|
||||
// true if update has been called recently
|
||||
bool AR_PosControl::is_active() const
|
||||
{
|
||||
return ((AP_HAL::millis() - _last_update_ms) < AR_POSCON_TIMEOUT_MS);
|
||||
}
|
||||
|
||||
// set limits
|
||||
void AR_PosControl::set_limits(float speed_max, float accel_max, float lat_accel_max, float jerk_max)
|
||||
{
|
||||
_speed_max = MAX(speed_max, 0);
|
||||
_accel_max = MAX(accel_max, 0);
|
||||
_lat_accel_max = MAX(lat_accel_max, 0);
|
||||
_jerk_max = MAX(jerk_max, 0);
|
||||
|
||||
// set position P controller limits
|
||||
_p_pos.set_limits(_speed_max, MIN(_accel_max, _lat_accel_max), _jerk_max);
|
||||
}
|
||||
|
||||
// setter to allow vehicle code to provide turn related param values to this library (should be updated regularly)
|
||||
void AR_PosControl::set_turn_params(float turn_radius, bool pivot_possible)
|
||||
{
|
||||
if (pivot_possible) {
|
||||
_turn_radius = 0;
|
||||
} else {
|
||||
_turn_radius = turn_radius;
|
||||
}
|
||||
}
|
||||
|
||||
// initialise the position controller to the current position, velocity, acceleration and attitude
|
||||
// this should be called before the input shaping methods are used
|
||||
bool AR_PosControl::init()
|
||||
{
|
||||
// get current position and velocity from AHRS
|
||||
Vector2f pos_NE;
|
||||
Vector3f vel_NED;
|
||||
if (!AP::ahrs().get_relative_position_NE_origin(pos_NE) || !AP::ahrs().get_velocity_NED(vel_NED)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// set target position to current position
|
||||
_pos_target.x = pos_NE.x;
|
||||
_pos_target.y = pos_NE.y;
|
||||
|
||||
// set target velocity and acceleration
|
||||
_vel_target = vel_NED.xy();
|
||||
_accel_target = AP::ahrs().get_accel_ef_blended().xy();
|
||||
|
||||
// clear reversed setting
|
||||
_reversed = false;
|
||||
|
||||
// initialise ekf xy reset handler
|
||||
init_ekf_xy_reset();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// methods to adjust position, velocity and acceleration targets smoothly using input shaping
|
||||
// pos should be the target position as an offset from the EKF origin (in meters)
|
||||
// dt should be the update rate in seconds
|
||||
void AR_PosControl::input_pos_target(const Vector2p &pos, float dt)
|
||||
{
|
||||
// adjust target position, velocity and acceleration forward by dt
|
||||
update_pos_vel_accel_xy(_pos_target, _vel_target, _accel_target, dt, Vector2f(), Vector2f(), Vector2f());
|
||||
|
||||
// call shape_pos_vel_accel_xy to pull target towards final destination
|
||||
Vector2f vel;
|
||||
Vector2f accel;
|
||||
const float accel_max = MIN(_accel_max, _lat_accel_max);
|
||||
shape_pos_vel_accel_xy(pos, vel, accel, _pos_target, _vel_target, _accel_target,
|
||||
_speed_max, accel_max, _jerk_max, dt, false);
|
||||
|
||||
// set flags so update will consume target position, velocity and acceleration
|
||||
_pos_target_valid = true;
|
||||
_vel_target_valid = true;
|
||||
_accel_target_valid = true;
|
||||
}
|
||||
|
||||
// set position, velocity and acceleration targets
|
||||
void AR_PosControl::set_pos_vel_accel_target(const Vector2p &pos, const Vector2f &vel, const Vector2f &accel)
|
||||
{
|
||||
_pos_target = pos;
|
||||
_vel_target = vel;
|
||||
_accel_target = accel;
|
||||
_pos_target_valid = true;
|
||||
_vel_target_valid = true;
|
||||
_accel_target_valid = true;
|
||||
}
|
||||
|
||||
// returns desired velocity vector (i.e. feed forward) in cm/s in lat and lon direction
|
||||
Vector2f AR_PosControl::get_desired_velocity() const
|
||||
{
|
||||
if (_vel_target_valid) {
|
||||
return _vel_target;
|
||||
}
|
||||
return Vector2f();
|
||||
}
|
||||
|
||||
// return desired acceleration vector in m/s in lat and lon direction
|
||||
Vector2f AR_PosControl::get_desired_accel() const
|
||||
{
|
||||
if (_accel_target_valid) {
|
||||
return _accel_target;
|
||||
}
|
||||
return Vector2f();
|
||||
}
|
||||
|
||||
/// get position error as a vector from the current position to the target position
|
||||
Vector2p AR_PosControl::get_pos_error() const
|
||||
{
|
||||
// return zero error is not active or no position estimate
|
||||
Vector2f curr_pos_NE;
|
||||
if (!is_active() ||!AP::ahrs().get_relative_position_NE_origin(curr_pos_NE)) {
|
||||
return Vector2p{};
|
||||
}
|
||||
|
||||
// get current position
|
||||
return (_pos_target - curr_pos_NE.topostype());
|
||||
}
|
||||
|
||||
// write PSC logs
|
||||
void AR_PosControl::write_log()
|
||||
{
|
||||
// exit immediately if not active
|
||||
if (!is_active()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// exit immediately if no position or velocity estimate
|
||||
Vector3f curr_pos_NED;
|
||||
Vector3f curr_vel_NED;
|
||||
if (!AP::ahrs().get_relative_position_NED_origin(curr_pos_NED) || !AP::ahrs().get_velocity_NED(curr_vel_NED)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// get acceleration
|
||||
const Vector3f curr_accel_NED;// = AP::ahrs().get_accel_ef_blended;
|
||||
|
||||
// convert position, velocity and accel targets to required format
|
||||
Vector2f pos_target_2d_cm = get_pos_target().tofloat() * 100.0;
|
||||
Vector2f vel_target_2d_cm = get_desired_velocity() * 100.0;
|
||||
Vector2f accel_target_2d_cm = get_desired_accel() * 100.0;
|
||||
|
||||
AP::logger().Write_PSCN(pos_target_2d_cm.x, // position target
|
||||
curr_pos_NED.x * 100.0, // position
|
||||
0.0, // desired velocity
|
||||
vel_target_2d_cm.x, // target velocity
|
||||
curr_vel_NED.x * 100.0, // velocity
|
||||
0.0, // desired accel
|
||||
accel_target_2d_cm.x, // target accel
|
||||
curr_accel_NED.x); // accel
|
||||
AP::logger().Write_PSCE(pos_target_2d_cm.y, // position target
|
||||
curr_pos_NED.y * 100.0, // position
|
||||
0.0, // desired velocity
|
||||
vel_target_2d_cm.y, // target velocity
|
||||
curr_vel_NED.y * 100.0, // velocity
|
||||
0.0, // desired accel
|
||||
accel_target_2d_cm.y, // target accel
|
||||
curr_accel_NED.y); // accel
|
||||
}
|
||||
|
||||
/// initialise ekf xy position reset check
|
||||
void AR_PosControl::init_ekf_xy_reset()
|
||||
{
|
||||
Vector2f pos_shift;
|
||||
_ekf_xy_reset_ms = AP::ahrs().getLastPosNorthEastReset(pos_shift);
|
||||
}
|
||||
|
||||
/// handle_ekf_xy_reset - check for ekf position reset and adjust loiter or brake target position
|
||||
void AR_PosControl::handle_ekf_xy_reset()
|
||||
{
|
||||
// check for position shift
|
||||
Vector2f pos_shift;
|
||||
uint32_t reset_ms = AP::ahrs().getLastPosNorthEastReset(pos_shift);
|
||||
if (reset_ms != _ekf_xy_reset_ms) {
|
||||
Vector2f pos_NE;
|
||||
if (!AP::ahrs().get_relative_position_NE_origin(pos_NE)) {
|
||||
return;
|
||||
}
|
||||
_pos_target = (pos_NE + _p_pos.get_error()).topostype();
|
||||
|
||||
Vector3f vel_NED;
|
||||
if (!AP::ahrs().get_velocity_NED(vel_NED)) {
|
||||
return;
|
||||
}
|
||||
_vel_target = vel_NED.xy() + _pid_vel.get_error();
|
||||
|
||||
_ekf_xy_reset_ms = reset_ms;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,116 @@
|
|||
#pragma once
|
||||
|
||||
#include <AP_Common/AP_Common.h>
|
||||
#include <APM_Control/AR_AttitudeControl.h>
|
||||
#include <AC_PID/AC_P_2D.h> // P library (2-axis)
|
||||
#include <AC_PID/AC_PID_2D.h> // PID library (2-axis)
|
||||
|
||||
class AR_PosControl {
|
||||
public:
|
||||
|
||||
// constructor
|
||||
AR_PosControl(AR_AttitudeControl& atc);
|
||||
|
||||
// update navigation
|
||||
void update(float dt);
|
||||
|
||||
// true if update has been called recently
|
||||
bool is_active() const;
|
||||
|
||||
// set speed, acceleration and jerk limits
|
||||
void set_limits(float speed_max, float accel_max, float lat_accel_max, float jerk_max);
|
||||
|
||||
// setter to allow vehicle code to provide turn related param values to this library (should be updated regularly)
|
||||
void set_turn_params(float turn_radius, bool pivot_possible);
|
||||
|
||||
// set reversed
|
||||
void set_reversed(bool reversed) { _reversed = reversed; }
|
||||
|
||||
// get limits
|
||||
float get_speed_max() const { return _speed_max; }
|
||||
float get_accel_max() const { return _accel_max; }
|
||||
float get_lat_accel_max() const { return _lat_accel_max; }
|
||||
float get_jerk_max() const { return _jerk_max; }
|
||||
|
||||
// initialise the position controller to the current position, velocity, acceleration and attitude
|
||||
// this should be called before the input shaping methods are used
|
||||
// return true on success, false if targets cannot be initialised
|
||||
bool init();
|
||||
|
||||
// adjust position, velocity and acceleration targets smoothly using input shaping
|
||||
// pos should be the target position as an offset from the EKF origin (in meters)
|
||||
// dt should be the update rate in seconds
|
||||
// init should be called once before starting to use these methods
|
||||
void input_pos_target(const Vector2p &pos, float dt);
|
||||
|
||||
// set position, velocity and acceleration targets. These should be from an externally created path and are not "input shaped"
|
||||
void set_pos_vel_accel_target(const Vector2p &pos, const Vector2f &vel, const Vector2f &accel);
|
||||
|
||||
// get outputs for forward-back speed (in m/s), lateral speed (in m/s) and turn rate (in rad/sec)
|
||||
float get_desired_speed() const { return _desired_speed; }
|
||||
float get_desired_turn_rate_rads() const { return _desired_turn_rate_rads; }
|
||||
float get_desired_lat_accel() const { return _desired_lat_accel; }
|
||||
|
||||
// get position target
|
||||
const Vector2p& get_pos_target() const { return _pos_target; }
|
||||
|
||||
// returns desired velocity vector (i.e. feed forward) in m/s in lat and lon direction
|
||||
Vector2f get_desired_velocity() const;
|
||||
|
||||
// return desired acceleration vector in m/s in lat and lon direction
|
||||
Vector2f get_desired_accel() const;
|
||||
|
||||
/// get position error as a vector from the current position to the target position
|
||||
Vector2p get_pos_error() const;
|
||||
|
||||
// get pid controllers
|
||||
AC_P_2D& get_pos_p() { return _p_pos; }
|
||||
AC_PID_2D& get_vel_pid() { return _pid_vel; }
|
||||
|
||||
// write PSC logs
|
||||
void write_log();
|
||||
|
||||
// parameter var table
|
||||
static const struct AP_Param::GroupInfo var_info[];
|
||||
|
||||
private:
|
||||
|
||||
// initialise and check for ekf position resets
|
||||
void init_ekf_xy_reset();
|
||||
void handle_ekf_xy_reset();
|
||||
|
||||
// references
|
||||
AR_AttitudeControl &_atc; // rover attitude control library
|
||||
|
||||
// parameters
|
||||
AC_P_2D _p_pos; // position P controller to convert distance error to desired velocity
|
||||
AC_PID_2D _pid_vel; // velocity PID controller to convert velocity error to desired acceleration
|
||||
|
||||
// limits
|
||||
float _speed_max; // maximum forward speed in m/s
|
||||
float _accel_max; // maximum forward/back acceleration in m/s/s
|
||||
float _lat_accel_max; // lateral acceleration maximum in m/s/s
|
||||
float _jerk_max; // maximum jerk in m/s/s/s (used for both forward and lateral input shaping)
|
||||
float _turn_radius; // vehicle turn radius in meters
|
||||
Vector2f _limit_vel; // To-Do: explain what this is
|
||||
|
||||
// position and velocity targets
|
||||
Vector2p _pos_target; // position target as an offset (in meters) from the EKF origin
|
||||
Vector2f _vel_target; // velocity target in m/s in NE frame
|
||||
Vector2f _accel_target; // accel target in m/s/s in NE frame
|
||||
bool _pos_target_valid; // true if _pos_target is valid
|
||||
bool _vel_target_valid; // true if _vel_target is valid
|
||||
bool _accel_target_valid; // true if _accel_target is valid
|
||||
|
||||
// variables for navigation
|
||||
uint32_t _last_update_ms; // system time of last call to update
|
||||
bool _reversed; // true if vehicle should move in reverse towards target
|
||||
|
||||
// main outputs
|
||||
float _desired_speed; // desired forward_back speed in m/s
|
||||
float _desired_turn_rate_rads; // desired turn-rate in rad/sec (negative is counter clockwise, positive is clockwise)
|
||||
float _desired_lat_accel; // desired lateral acceleration (for reporting only)
|
||||
|
||||
// ekf reset handling
|
||||
uint32_t _ekf_xy_reset_ms; // system time of last recorded ekf xy position reset
|
||||
};
|
Loading…
Reference in New Issue