AC_PID: upgrade to PID object

This commit is contained in:
Leonard Hall 2019-06-27 19:03:15 +09:30 committed by Randy Mackay
parent 94ee2fb2fd
commit ab0bdc9fe6
3 changed files with 302 additions and 173 deletions

View File

@ -21,32 +21,49 @@ const AP_Param::GroupInfo AC_PID::var_info[] = {
AP_GROUPINFO("D", 2, AC_PID, _kd, 0),
// 3 was for uint16 IMAX
// 4 is used by TradHeli for FF
// @Param: IMAX
// @DisplayName: PID Integral Maximum
// @Description: The maximum/minimum value that the I term can output
AP_GROUPINFO("IMAX", 5, AC_PID, _imax, 0),
// @Param: FILT
// @DisplayName: PID Input filter frequency in Hz
// @Description: Input filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FILT", 6, AC_PID, _filt_hz, AC_PID_FILT_HZ_DEFAULT),
// @Param: FF
// @DisplayName: FF FeedForward Gain
// @Description: FF Gain which produces an output value that is proportional to the demanded input
AP_GROUPINFO("FF", 7, AC_PID, _ff, 0),
AP_GROUPINFO("FF", 4, AC_PID, _kff, 0),
// @Param: IMAX
// @DisplayName: PID Integral Maximum
// @Description: The maximum/minimum value that the I term can output
AP_GROUPINFO("IMAX", 5, AC_PID, _kimax, 0),
// 6 was for float FILT
// 7 is for float ILMI and FF
// index 8 was for AFF
// @Param: FLTT
// @DisplayName: PID Target filter frequency in Hz
// @Description: Target filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTT", 9, AC_PID, _filt_T_hz, AC_PID_TFILT_HZ_DEFAULT),
// @Param: FLTE
// @DisplayName: PID Error filter frequency in Hz
// @Description: Error filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTE", 10, AC_PID, _filt_E_hz, AC_PID_EFILT_HZ_DEFAULT),
// @Param: FLTD
// @DisplayName: PID Derivative term filter frequency in Hz
// @Description: Derivative filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTD", 11, AC_PID, _filt_D_hz, AC_PID_DFILT_HZ_DEFAULT),
AP_GROUPEND
};
// Constructor
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float dt, float initial_ff) :
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
_dt(dt),
_integrator(0.0f),
_input(0.0f),
_error(0.0f),
_derivative(0.0f)
{
// load parameter values from eeprom
@ -55,9 +72,11 @@ AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_
_kp = initial_p;
_ki = initial_i;
_kd = initial_d;
_imax = fabsf(initial_imax);
filt_hz(initial_filt_hz);
_ff = initial_ff;
_kff = initial_ff;
_kimax = fabsf(initial_imax);
filt_T_hz(initial_filt_T_hz);
filt_E_hz(initial_filt_E_hz);
filt_D_hz(initial_filt_D_hz);
// reset input filter to first value received
_flags._reset_filter = true;
@ -72,109 +91,157 @@ void AC_PID::set_dt(float dt)
_dt = dt;
}
// filt_hz - set input filter hz
void AC_PID::filt_hz(float hz)
// filt_T_hz - set target filter hz
void AC_PID::filt_T_hz(float hz)
{
_filt_hz.set(fabsf(hz));
// sanity check _filt_hz
_filt_hz = MAX(_filt_hz, AC_PID_FILT_HZ_MIN);
_filt_T_hz.set(fabsf(hz));
}
// set_input_filter_all - set input to PID controller
// input is filtered before the PID controllers are run
// this should be called before any other calls to get_p, get_i or get_d
void AC_PID::set_input_filter_all(float input)
// filt_E_hz - set error filter hz
void AC_PID::filt_E_hz(float hz)
{
_filt_E_hz.set(fabsf(hz));
}
// filt_D_hz - set derivative filter hz
void AC_PID::filt_D_hz(float hz)
{
_filt_D_hz.set(fabsf(hz));
}
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float AC_PID::update_all(float target, float measurement, bool limit)
{
// don't process inf or NaN
if (!isfinite(input)) {
return;
if (!isfinite(target) || !isfinite(measurement)) {
return 0.0f;
}
// reset input filter to value received
if (_flags._reset_filter) {
_flags._reset_filter = false;
_input = input;
_target = target;
_error = _target - measurement;
_derivative = 0.0f;
} else {
float error_last = _error;
_target += get_filt_T_alpha() * (target - _target);
_error += get_filt_E_alpha() * ((_target - measurement) - _error);
// calculate and filter derivative
if (_dt > 0.0f) {
float derivative = (_error - error_last) / _dt;
_derivative += get_filt_D_alpha() * (derivative - _derivative);
}
}
// update filter and calculate derivative
float input_filt_change = get_filt_alpha() * (input - _input);
_input = _input + input_filt_change;
if (_dt > 0.0f) {
_derivative = input_filt_change / _dt;
}
// update I term
update_i(limit);
float P_out = (_error * _kp);
float D_out = (_derivative * _kd);
_pid_info.target = _target;
_pid_info.actual = measurement;
_pid_info.error = _error;
_pid_info.P = P_out;
_pid_info.D = D_out;
return P_out + _integrator + D_out;
}
// set_input_filter_d - set input to PID controller
// only input to the D portion of the controller is filtered
// this should be called before any other calls to get_p, get_i or get_d
void AC_PID::set_input_filter_d(float input)
// update_error - set error input to PID controller and calculate outputs
// target is set to zero and error is set and filtered
// the derivative then is calculated and filtered
// the integral is then updated based on the setting of the limit flag
// Target and Measured must be set manually for logging purposes.
// todo: remove function when it is no longer used.
float AC_PID::update_error(float error, bool limit)
{
// don't process inf or NaN
if (!isfinite(input)) {
return;
if (!isfinite(error)) {
return 0.0f;
}
_target = 0.0f;
// reset input filter to value received
if (_flags._reset_filter) {
_flags._reset_filter = false;
_input = input;
_error = error;
_derivative = 0.0f;
}
} else {
float error_last = _error;
_error += get_filt_E_alpha() * (error - _error);
// update filter and calculate derivative
// calculate and filter derivative
if (_dt > 0.0f) {
float derivative = (input - _input) / _dt;
_derivative = _derivative + get_filt_alpha() * (derivative-_derivative);
float derivative = (_error - error_last) / _dt;
_derivative += get_filt_D_alpha() * (derivative - _derivative);
}
}
_input = input;
// update I term
update_i(limit);
float P_out = (_error * _kp);
float D_out = (_derivative * _kd);
_pid_info.target = 0.0f;
_pid_info.actual = 0.0f;
_pid_info.error = _error;
_pid_info.P = P_out;
_pid_info.D = D_out;
return P_out + _integrator + D_out;
}
float AC_PID::get_p()
// update_i - update the integral
// If the limit flag is set the integral is only allowed to shrink
void AC_PID::update_i(bool limit)
{
_pid_info.P = (_input * _kp);
return _pid_info.P;
}
float AC_PID::get_i()
{
if(!is_zero(_ki) && !is_zero(_dt)) {
_integrator += ((float)_input * _ki) * _dt;
if (_integrator < -_imax) {
_integrator = -_imax;
} else if (_integrator > _imax) {
_integrator = _imax;
if (!is_zero(_ki) && is_positive(_dt)) {
// Ensure that integrator can only be reduced if the output is saturated
if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) {
_integrator += ((float)_error * _ki) * _dt;
_integrator = constrain_float(_integrator, -_kimax, _kimax);
}
} else {
_integrator = 0.0f;
}
_pid_info.I = _integrator;
}
float AC_PID::get_p() const
{
return _error * _kp;
}
float AC_PID::get_i() const
{
return _integrator;
}
return 0;
}
float AC_PID::get_d()
float AC_PID::get_d() const
{
// derivative component
_pid_info.D = (_kd * _derivative);
return _pid_info.D;
return _kd * _derivative;
}
float AC_PID::get_ff(float requested_rate)
float AC_PID::get_ff()
{
_pid_info.FF = (float)requested_rate * _ff;
return _pid_info.FF;
_pid_info.FF = _target * _kff;
return _target * _kff;
}
float AC_PID::get_pi()
// todo: remove function when it is no longer used.
float AC_PID::get_ff(float target)
{
return get_p() + get_i();
}
float AC_PID::get_pid()
{
return get_p() + get_i() + get_d();
float FF_out = (target * _kff);
_pid_info.FF = FF_out;
return FF_out;
}
void AC_PID::reset_I()
@ -187,9 +254,12 @@ void AC_PID::load_gains()
_kp.load();
_ki.load();
_kd.load();
_imax.load();
_imax = fabsf(_imax);
_filt_hz.load();
_kff.load();
_kimax.load();
_kimax = fabsf(_kimax);
_filt_T_hz.load();
_filt_E_hz.load();
_filt_D_hz.load();
}
// save_gains - save gains to eeprom
@ -198,30 +268,63 @@ void AC_PID::save_gains()
_kp.save();
_ki.save();
_kd.save();
_imax.save();
_filt_hz.save();
_kff.save();
_kimax.save();
_filt_T_hz.save();
_filt_E_hz.save();
_filt_D_hz.save();
}
/// Overload the function call operator to permit easy initialisation
void AC_PID::operator() (float p, float i, float d, float imaxval, float input_filt_hz, float dt, float ffval)
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt)
{
_kp = p;
_ki = i;
_kd = d;
_imax = fabsf(imaxval);
_filt_hz = input_filt_hz;
_kp = p_val;
_ki = i_val;
_kd = d_val;
_kff = ff_val;
_kimax = fabsf(imax_val);
_filt_T_hz = input_filt_T_hz;
_filt_E_hz = input_filt_E_hz;
_filt_D_hz = input_filt_D_hz;
_dt = dt;
_ff = ffval;
}
// calc_filt_alpha - recalculate the input filter alpha
float AC_PID::get_filt_alpha() const
// get_filt_T_alpha - get the target filter alpha
float AC_PID::get_filt_T_alpha() const
{
if (is_zero(_filt_hz)) {
return get_filt_alpha(_filt_T_hz);
}
// get_filt_E_alpha - get the error filter alpha
float AC_PID::get_filt_E_alpha() const
{
return get_filt_alpha(_filt_E_hz);
}
// get_filt_D_alpha - get the derivative filter alpha
float AC_PID::get_filt_D_alpha() const
{
return get_filt_alpha(_filt_D_hz);
}
// get_filt_alpha - calculate a filter alpha
float AC_PID::get_filt_alpha(float filt_hz) const
{
if (is_zero(filt_hz)) {
return 1.0f;
}
// calculate alpha
float rc = 1/(M_2PI*_filt_hz);
float rc = 1 / (M_2PI * filt_hz);
return _dt / (_dt + rc);
}
void AC_PID::set_integrator(float target, float measurement, float i)
{
set_integrator(target - measurement, i);
}
void AC_PID::set_integrator(float error, float i)
{
_integrator = constrain_float(i - error * _kp, -_kimax, _kimax);
}

View File

@ -9,8 +9,9 @@
#include <cmath>
#include <AP_Logger/AP_Logger.h>
#define AC_PID_FILT_HZ_DEFAULT 20.0f // default input filter frequency
#define AC_PID_FILT_HZ_MIN 0.01f // minimum input filter frequency
#define AC_PID_TFILT_HZ_DEFAULT 0.0f // default input filter frequency
#define AC_PID_EFILT_HZ_DEFAULT 0.0f // default input filter frequency
#define AC_PID_DFILT_HZ_DEFAULT 20.0f // default input filter frequency
/// @class AC_PID
/// @brief Copter PID control class
@ -18,34 +19,47 @@ class AC_PID {
public:
// Constructor for PID
AC_PID(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float dt, float initial_ff = 0);
AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt);
// set_dt - set time step in seconds
void set_dt(float dt);
// set_input_filter_all - set input to PID controller
// input is filtered before the PID controllers are run
// this should be called before any other calls to get_p, get_i or get_d
void set_input_filter_all(float input);
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float update_all(float target, float measurement, bool limit = false);
// set_input_filter_d - set input to PID controller
// only input to the D portion of the controller is filtered
// this should be called before any other calls to get_p, get_i or get_d
void set_input_filter_d(float input);
// update_error - set error input to PID controller and calculate outputs
// target is set to zero and error is set and filtered
// the derivative then is calculated and filtered
// the integral is then updated based on the setting of the limit flag
// Target and Measured must be set manually for logging purposes.
// todo: remove function when it is no longer used.
float update_error(float error, bool limit = false);
// update_i - update the integral
// if the limit flag is set the integral is only allowed to shrink
void update_i(bool limit);
// get_pid - get results from pid controller
float get_pid();
float get_pi();
float get_p();
float get_i();
float get_d();
float get_ff(float requested_rate);
float get_pid() const;
float get_pi() const;
float get_p() const;
float get_i() const;
float get_d() const;
float get_ff();
// todo: remove function when it is no longer used.
float get_ff(float target);
// reset_I - reset the integrator
void reset_I();
// reset_filter - input filter will be reset to the next value provided to set_input()
void reset_filter() { _flags._reset_filter = true; }
void reset_filter() {
_flags._reset_filter = true;
}
// load gain from eeprom
void load_gains();
@ -54,32 +68,41 @@ public:
void save_gains();
/// operator function call for easy initialisation
void operator() (float p, float i, float d, float imaxval, float input_filt_hz, float dt, float ffval = 0);
void operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt);
// get accessors
AP_Float &kP() { return _kp; }
AP_Float &kI() { return _ki; }
AP_Float &kD() { return _kd; }
AP_Float &filt_hz() { return _filt_hz; }
float imax() const { return _imax.get(); }
float get_filt_alpha() const;
float ff() const { return _ff.get(); }
AP_Float &ff() { return _kff;}
AP_Float &filt_T_hz() { return _filt_T_hz; }
AP_Float &filt_E_hz() { return _filt_E_hz; }
AP_Float &filt_D_hz() { return _filt_D_hz; }
float imax() const { return _kimax.get(); }
float get_filt_alpha(float filt_hz) const;
float get_filt_T_alpha() const;
float get_filt_E_alpha() const;
float get_filt_D_alpha() const;
// set accessors
void kP(const float v) { _kp.set(v); }
void kI(const float v) { _ki.set(v); }
void kD(const float v) { _kd.set(v); }
void imax(const float v) { _imax.set(fabsf(v)); }
void filt_hz(const float v);
void ff(const float v) { _ff.set(v); }
float get_integrator() const { return _integrator; }
void set_integrator(float i) { _integrator = i; }
void ff(const float v) { _kff.set(v); }
void imax(const float v) { _kimax.set(fabsf(v)); }
void filt_T_hz(const float v);
void filt_E_hz(const float v);
void filt_D_hz(const float v);
// set the desired and actual rates (for logging purposes)
void set_desired_rate(float desired) { _pid_info.desired = desired; }
void set_target_rate(float target) { _pid_info.target = target; }
void set_actual_rate(float actual) { _pid_info.actual = actual; }
// integrator setting functions
void set_integrator(float target, float measurement, float i);
void set_integrator(float error, float i);
void set_integrator(float i) { _integrator = constrain_float(i, -_kimax, _kimax); }
const AP_Logger::PID_Info& get_pid_info(void) const { return _pid_info; }
// parameter var table
@ -91,20 +114,23 @@ protected:
AP_Float _kp;
AP_Float _ki;
AP_Float _kd;
AP_Float _imax;
AP_Float _filt_hz; // PID Input filter frequency in Hz
AP_Float _ff;
AP_Float _kff;
AP_Float _kimax;
AP_Float _filt_T_hz; // PID target filter frequency in Hz
AP_Float _filt_E_hz; // PID error filter frequency in Hz
AP_Float _filt_D_hz; // PID derivative filter frequency in Hz
// flags
struct ac_pid_flags {
bool _reset_filter : 1; // true when input filter should be reset during next call to set_input
bool _reset_filter :1; // true when input filter should be reset during next call to set_input
} _flags;
// internal variables
float _dt; // timestep in seconds
float _integrator; // integrator value
float _input; // last input for derivative
float _derivative; // last derivative for low-pass filter
float _target; // target value to enable filtering
float _error; // error value to enable filtering
float _derivative; // derivative value to enable filtering
AP_Logger::PID_Info _pid_info;
};

View File

@ -70,8 +70,8 @@ void setup()
void loop()
{
// setup (unfortunately must be done here as we cannot create a global AC_PID object)
AC_PID pid(TEST_P, TEST_I, TEST_D, TEST_IMAX * 100, TEST_FILTER, TEST_DT);
AC_HELI_PID heli_pid(TEST_P, TEST_I, TEST_D, TEST_IMAX * 100, TEST_FILTER, TEST_DT, TEST_INITIAL_FF);
AC_PID pid(TEST_P, TEST_I, TEST_D, 0.0f, TEST_IMAX * 100.0f, 0.0f, 0.0f, TEST_FILTER, TEST_DT);
AC_HELI_PID heli_pid(TEST_P, TEST_I, TEST_D, TEST_INITIAL_FF, TEST_IMAX * 100, 0.0f, 0.0f, TEST_FILTER, TEST_DT);
// display PID gains
hal.console->printf("P %f I %f D %f imax %f\n", (double)pid.kP(), (double)pid.kI(), (double)pid.kD(), (double)pid.imax());
@ -91,7 +91,7 @@ void loop()
rc().read_input(); // poll the radio for new values
const uint16_t radio_in = c->get_radio_in();
const int16_t error = radio_in - radio_trim;
pid.set_input_filter_all(error);
pid.update_error(error);
const float control_P = pid.get_p();
const float control_I = pid.get_i();
const float control_D = pid.get_d();