AP_Math: added quaternion->matrix and earth frame routines

this will be used for 3d acceleration
This commit is contained in:
Andrew Tridgell 2012-03-05 22:41:10 +11:00
parent d3dc5bd751
commit a8fd31a5e1
2 changed files with 54 additions and 10 deletions

View File

@ -56,7 +56,7 @@ void rotation_matrix_from_euler(Matrix3f &m, float roll, float pitch, float yaw)
// calculate euler angles from a rotation matrix
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
void calculate_euler_angles(Matrix3f &m, float *roll, float *pitch, float *yaw)
void calculate_euler_angles(const Matrix3f &m, float *roll, float *pitch, float *yaw)
{
if (pitch != NULL) {
*pitch = -safe_asin(m.c.x);
@ -73,14 +73,14 @@ void calculate_euler_angles(Matrix3f &m, float *roll, float *pitch, float *yaw)
// create a quaternion from Euler angles
void quaternion_from_euler(Quaternion &q, float roll, float pitch, float yaw)
{
float cr2 = cos(roll/2);
float cp2 = cos(pitch/2);
float cy2 = cos(yaw/2);
float cr2 = cos(roll*0.5);
float cp2 = cos(pitch*0.5);
float cy2 = cos(yaw*0.5);
// the sign reversal here is due to the different conventions
// in the madgwick quaternion code and the rest of APM
float sr2 = -sin(roll/2);
float sp2 = -sin(pitch/2);
float sy2 = sin(yaw/2);
float sr2 = -sin(roll*0.5);
float sp2 = -sin(pitch*0.5);
float sy2 = sin(yaw*0.5);
q.q1 = cr2*cp2*cy2 + sr2*sp2*sy2;
q.q2 = sr2*cp2*cy2 - cr2*sp2*sy2;
@ -89,7 +89,7 @@ void quaternion_from_euler(Quaternion &q, float roll, float pitch, float yaw)
}
// create eulers from a quaternion
void euler_from_quaternion(Quaternion &q, float *roll, float *pitch, float *yaw)
void euler_from_quaternion(const Quaternion &q, float *roll, float *pitch, float *yaw)
{
*roll = -(atan2(2.0*(q.q1*q.q2 + q.q3*q.q4),
1 - 2.0*(q.q2*q.q2 + q.q3*q.q3)));
@ -98,3 +98,40 @@ void euler_from_quaternion(Quaternion &q, float *roll, float *pitch, float *yaw)
*yaw = atan2(2.0*(q.q1*q.q4 + q.q2*q.q3),
1 - 2.0*(q.q3*q.q3 + q.q4*q.q4));
}
// convert a quaternion to a rotation matrix
void quaternion_to_rotation_matrix(const Quaternion &q, Matrix3f &m)
{
float q3q3 = q.q3 * q.q3;
float q3q4 = q.q3 * q.q4;
float q2q2 = q.q2 * q.q2;
float q2q3 = q.q2 * q.q3;
float q2q4 = q.q2 * q.q4;
float q1q2 = q.q1 * q.q2;
float q1q3 = q.q1 * q.q3;
float q1q4 = q.q1 * q.q4;
float q4q4 = q.q4 * q.q4;
m.a.x = 1-2*(q3q3 + q4q4);
m.a.y = 2*(q2q3 - q1q4);
m.a.z = - 2*(q2q4 + q1q3);
m.b.x = 2*(q2q3 + q1q4);
m.b.y = 1-2*(q2q2 + q4q4);
m.b.z = -2*(q3q4 - q1q2);
m.c.x = -2*(q2q4 - q1q3);
m.c.y = -2*(q3q4 + q1q2);
m.c.z = 1-2*(q2q2 + q3q3);
}
// convert a vector in earth frame to a vector in body frame,
// assuming body current rotation is given by a quaternion
void quaternion_earth_to_body(const Quaternion &q, Vector3f &v)
{
Matrix3f m;
// we reverse z before and afterwards because of the differing
// quaternion conventions from APM conventions.
v.z = -v.z;
quaternion_to_rotation_matrix(q, m);
v = m * v;
v.z = -v.z;
}

View File

@ -24,10 +24,17 @@ float safe_sqrt(float v);
void rotation_matrix_from_euler(Matrix3f &m, float roll, float pitch, float yaw);
// calculate euler angles from a rotation matrix
void calculate_euler_angles(Matrix3f &m, float *roll, float *pitch, float *yaw);
void calculate_euler_angles(const Matrix3f &m, float *roll, float *pitch, float *yaw);
// create a quaternion from Euler angles
void quaternion_from_euler(Quaternion &q, float roll, float pitch, float yaw);
// create eulers from a quaternion
void euler_from_quaternion(Quaternion &q, float *roll, float *pitch, float *yaw);
void euler_from_quaternion(const Quaternion &q, float *roll, float *pitch, float *yaw);
// convert a quaternion to a rotation matrix
void quaternion_to_rotation_matrix(const Quaternion &q, Matrix3f &m);
// convert a vector in earth frame to a vector in body frame,
// assuming body current rotation is given by a quaternion
void quaternion_earth_to_body(const Quaternion &q, Vector3f &v);