This commit is contained in:
Chris Anderson 2012-01-11 22:59:30 -08:00
commit a70df9cc9d
5 changed files with 77 additions and 10 deletions

View File

@ -1,6 +1,6 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V2.1.1r9 alpha"
#define THISFIRMWARE "ArduCopter V2.1.1r10 alpha"
/*
ArduCopter Version 2.0 Beta
Authors: Jason Short

View File

@ -359,9 +359,12 @@ static bool verify_land()
// remenber altitude for climb_rate
old_alt = current_loc.alt;
if ((current_loc.alt - home.alt) < 200){
if ((current_loc.alt - home.alt) < 250){
// don't bank to hold position
wp_control = NO_NAV_MODE;
// try and come down faster
// by setting next_WP really low.
set_new_altitude(-1000);
}
if((current_loc.alt - home.alt) < 100 && velocity_land <= 50){

View File

@ -66,7 +66,6 @@ static void update_commands()
// We are still in the same mode as what landed us,
// so maybe we try to continue to descend just in case we are still in the air
// This will also drive down the Iterm to -300
set_new_altitude(-10000);
// We can't disarm the motors easily. We could very well be wrong
//

View File

@ -615,10 +615,10 @@
//////////////////////////////////////////////////////////////////////////////
// Navigation control gains
// Loiter control gains
//
#ifndef LOITER_P
# define LOITER_P .25 //
# define LOITER_P 2.4 // was .25 in previous
#endif
#ifndef LOITER_I
# define LOITER_I 0.1 // Wind control
@ -627,6 +627,9 @@
# define LOITER_IMAX 30 // degrees°
#endif
//////////////////////////////////////////////////////////////////////////////
// WP Navigation control gains
//
#ifndef NAV_P
# define NAV_P 2.2 // 3 was causing rapid oscillations in Loiter
#endif

View File

@ -44,7 +44,7 @@ static void calc_XY_velocity(){
// used for estimations below 1.5m/s
// our GPS is about 1m per
static int32_t last_longitude = 0;
static int32_t last_latutude = 0;
static int32_t last_latitude = 0;
// y_GPS_speed positve = Up
// x_GPS_speed positve = Right
@ -54,11 +54,14 @@ static void calc_XY_velocity(){
//int8_t tmp = 5;
int16_t x_diff = (g_gps->longitude - last_longitude) * tmp;
int16_t y_diff = (g_gps->latitude - last_latutude) * tmp;
int16_t y_diff = (g_gps->latitude - last_latitude) * tmp;
// filter
x_GPS_speed = (x_GPS_speed * 3 + x_diff) / 4;
y_GPS_speed = (y_GPS_speed * 3 + y_diff) / 4;
x_GPS_speed = (x_GPS_speed + x_diff) >> 1;
y_GPS_speed = (y_GPS_speed + y_diff) >> 1;
//x_GPS_speed = x_diff;
//y_GPS_speed = y_diff;
// Above simply works better than GPS groundspeed
// which is proving to be problematic
@ -72,7 +75,7 @@ static void calc_XY_velocity(){
}*/
last_longitude = g_gps->longitude;
last_latutude = g_gps->latitude;
last_latitude = g_gps->latitude;
//Serial.printf("GS: %d \tx:%d \ty:%d\n", g_gps->ground_speed, x_GPS_speed, y_GPS_speed);
}
@ -95,9 +98,68 @@ static void calc_location_error(struct Location *next_loc)
lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North
}
/*
//static void calc_loiter3(int x_error, int y_error)
{
static int32_t gps_lat_I = 0;
static int32_t gps_lon_I = 0;
// If close to goal <1m reset the I term
if (abs(x_error) < 50)
gps_lon_I = 0;
if (abs(y_error) < 50)
gps_lat_I = 0;
gps_lon_I += x_error;
gps_lat_I += y_error;
gps_lon_I = constrain(gps_lon_I,-3000,3000);
gps_lat_I = constrain(gps_lat_I,-3000,3000);
int16_t lon_P = 1.2 * (float)x_error;
int16_t lon_I = 0.1 * (float)gps_lon_I; //.1
int16_t lon_D = 3 * x_GPS_speed ; // this controls the small bumps
int16_t lat_P = 1.2 * (float)y_error;
int16_t lat_I = 0.1 * (float)gps_lat_I;
int16_t lat_D = 3 * y_GPS_speed ;
//limit of terms
lon_I = constrain(lon_I,-3000,3000);
lat_I = constrain(lat_I,-3000,3000);
lon_D = constrain(lon_D,-500,500); //this controls the long distance dampimg
lat_D = constrain(lat_D,-500,500); //this controls the long distance dampimg
nav_lon = lon_P + lon_I - lon_D;
nav_lat = lat_P + lat_I - lat_D;
Serial.printf("%d, %d, %d, %d, %d, %d\n",
lon_P, lat_P,
lon_I, lat_I,
lon_D, lat_D);
}
*/
#define NAV_ERR_MAX 800
static void calc_loiter(int x_error, int y_error)
{
int16_t lon_PI = g.pi_loiter_lon.get_pi(x_error, dTnav);
int16_t lon_D = 3 * x_actual_speed ; // this controls the small bumps
int16_t lat_PI = g.pi_loiter_lat.get_pi(y_error, dTnav);
int16_t lat_D = 3 * y_actual_speed ;
//limit of terms
lon_D = constrain(lon_D,-500,500);
lat_D = constrain(lat_D,-500,500);
nav_lon = constrain(lon_PI - lon_D, -2500, 2500);
nav_lat = constrain(lat_PI - lat_D, -2500, 2500);
}
static void calc_loiter1(int x_error, int y_error)
{
// East/West
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); //800