mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-08 17:08:28 -04:00
Sub: Move arming checks under AP_Arming_Sub
This commit is contained in:
parent
d21cd513cd
commit
a62d728933
@ -5,3 +5,49 @@ enum HomeState AP_Arming_Sub::home_status() const
|
||||
{
|
||||
return sub.ap.home_state;
|
||||
}
|
||||
|
||||
bool AP_Arming_Sub::rc_check(bool report)
|
||||
{
|
||||
// set rc-checks to success if RC checks are disabled
|
||||
if ((checks_to_perform != ARMING_CHECK_ALL) && !(checks_to_perform & ARMING_CHECK_RC)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
static const char* message_fail = "PreArm: Check RC min/max parameters";
|
||||
bool ret = true;
|
||||
|
||||
// check channels 1 & 2 have min <= 1300 and max >= 1700
|
||||
if (sub.channel_roll->get_radio_min() > 1300 || sub.channel_roll->get_radio_max() < 1700 || sub.channel_pitch->get_radio_min() > 1300 || sub.channel_pitch->get_radio_max() < 1700) {
|
||||
ret = false;
|
||||
}
|
||||
|
||||
// check channels 3 & 4 have min <= 1300 and max >= 1700
|
||||
if (sub.channel_throttle->get_radio_min() > 1300 || sub.channel_throttle->get_radio_max() < 1700 || sub.channel_yaw->get_radio_min() > 1300 || sub.channel_yaw->get_radio_max() < 1700) {
|
||||
ret = false;
|
||||
}
|
||||
|
||||
// check channels 1 & 2 have trim >= 1300 and <= 1700
|
||||
if (sub.channel_roll->get_radio_trim() < 1300 || sub.channel_roll->get_radio_trim() > 1700 || sub.channel_pitch->get_radio_trim() < 1300 || sub.channel_pitch->get_radio_trim() > 1700) {
|
||||
ret = false;
|
||||
}
|
||||
|
||||
// check channel 4 has trim >= 1300 and <= 1700
|
||||
if (sub.channel_yaw->get_radio_trim() < 1300 || sub.channel_yaw->get_radio_trim() > 1700) {
|
||||
ret = false;
|
||||
}
|
||||
|
||||
if (report && !ret) {
|
||||
sub.gcs_send_text(MAV_SEVERITY_CRITICAL, message_fail);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool AP_Arming_Sub::pre_arm_checks(bool report)
|
||||
{
|
||||
if (armed) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return AP_Arming::pre_arm_checks(report) & rc_check(report);
|
||||
}
|
||||
|
@ -10,6 +10,9 @@ public:
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
}
|
||||
|
||||
bool rc_check(bool report=true);
|
||||
bool pre_arm_checks(bool report) override;
|
||||
|
||||
protected:
|
||||
enum HomeState home_status() const override;
|
||||
};
|
||||
|
@ -74,13 +74,6 @@ void Sub::set_pre_arm_check(bool b)
|
||||
}
|
||||
}
|
||||
|
||||
void Sub::set_pre_arm_rc_check(bool b)
|
||||
{
|
||||
if (ap.pre_arm_rc_check != b) {
|
||||
ap.pre_arm_rc_check = b;
|
||||
}
|
||||
}
|
||||
|
||||
void Sub::update_using_interlock()
|
||||
{
|
||||
// check if we are using motor interlock control on an aux switch
|
||||
|
@ -372,12 +372,12 @@ void Sub::three_hz_loop()
|
||||
// one_hz_loop - runs at 1Hz
|
||||
void Sub::one_hz_loop()
|
||||
{
|
||||
AP_Notify::flags.pre_arm_check = arming.pre_arm_checks(false);
|
||||
|
||||
if (should_log(MASK_LOG_ANY)) {
|
||||
Log_Write_Data(DATA_AP_STATE, ap.value);
|
||||
}
|
||||
|
||||
update_arming_checks();
|
||||
|
||||
if (!motors.armed()) {
|
||||
// make it possible to change ahrs orientation at runtime during initial config
|
||||
ahrs.set_orientation();
|
||||
|
@ -230,28 +230,26 @@ private:
|
||||
# include USERHOOK_VARIABLES
|
||||
#endif
|
||||
|
||||
// Documentation of GLobals:
|
||||
// Documentation of Globals:
|
||||
union {
|
||||
struct {
|
||||
uint8_t unused1 : 1; // 0
|
||||
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
|
||||
uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully
|
||||
uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
|
||||
uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised
|
||||
uint8_t logging_started : 1; // 6 // true if dataflash logging has started
|
||||
uint8_t new_radio_frame : 1; // 8 // Set true if we have new PWM data to act on from the Radio
|
||||
uint8_t usb_connected : 1; // 9 // true if APM is powered from USB connection
|
||||
uint8_t rc_receiver_present : 1; // 10 // true if we have an rc receiver present (i.e. if we've ever received an update
|
||||
uint8_t compass_mot : 1; // 11 // true if we are currently performing compassmot calibration
|
||||
uint8_t motor_test : 1; // 12 // true if we are currently performing the motors test
|
||||
uint8_t initialised : 1; // 13 // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes
|
||||
uint8_t throttle_zero : 1; // 15 // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down when not using motor interlock
|
||||
uint8_t system_time_set : 1; // 16 // true if the system time has been set from the GPS
|
||||
uint8_t gps_base_pos_set : 1; // 17 // true when the gps base position has been set (used for RTK gps only)
|
||||
enum HomeState home_state : 2; // 18,19 // home status (unset, set, locked)
|
||||
uint8_t using_interlock : 1; // 20 // aux switch motor interlock function is in use
|
||||
uint8_t motor_emergency_stop: 1; // 21 // motor estop switch, shuts off motors when enabled
|
||||
uint8_t land_repo_active : 1; // 22 // true if the pilot is overriding the landing position
|
||||
uint8_t simple_mode : 2; // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
|
||||
uint8_t pre_arm_check : 1; // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
|
||||
uint8_t auto_armed : 1; // stops auto missions from beginning until throttle is raised
|
||||
uint8_t logging_started : 1; // true if dataflash logging has started
|
||||
uint8_t new_radio_frame : 1; // Set true if we have new PWM data to act on from the Radio
|
||||
uint8_t usb_connected : 1; // true if APM is powered from USB connection
|
||||
uint8_t rc_receiver_present : 1; // true if we have an rc receiver present (i.e. if we've ever received an update
|
||||
uint8_t compass_mot : 1; // true if we are currently performing compassmot calibration
|
||||
uint8_t motor_test : 1; // true if we are currently performing the motors test
|
||||
uint8_t initialised : 1; // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes
|
||||
uint8_t throttle_zero : 1; // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down when not using motor interlock
|
||||
uint8_t system_time_set : 1; // true if the system time has been set from the GPS
|
||||
uint8_t gps_base_pos_set : 1; // true when the gps base position has been set (used for RTK gps only)
|
||||
enum HomeState home_state : 2; // home status (unset, set, locked)
|
||||
uint8_t using_interlock : 1; // aux switch motor interlock function is in use
|
||||
uint8_t motor_emergency_stop: 1; // motor estop switch, shuts off motors when enabled
|
||||
uint8_t land_repo_active : 1; // true if the pilot is overriding the landing position
|
||||
uint8_t at_bottom : 1; // true if we are at the bottom
|
||||
uint8_t at_surface : 1; // true if we are at the surface
|
||||
uint8_t depth_sensor_present: 1; // true if we have an external baro connected
|
||||
@ -510,7 +508,6 @@ private:
|
||||
void set_simple_mode(uint8_t b);
|
||||
void set_failsafe_battery(bool b);
|
||||
void set_pre_arm_check(bool b);
|
||||
void set_pre_arm_rc_check(bool b);
|
||||
void update_using_interlock();
|
||||
void set_motor_emergency_stop(bool b);
|
||||
float get_smoothing_gain();
|
||||
@ -727,15 +724,6 @@ private:
|
||||
void motor_test_stop();
|
||||
void auto_disarm_check();
|
||||
bool init_arm_motors(bool arming_from_gcs);
|
||||
void update_arming_checks(void);
|
||||
bool all_arming_checks_passing(bool arming_from_gcs);
|
||||
bool pre_arm_checks(bool display_failure);
|
||||
void pre_arm_rc_checks();
|
||||
bool pre_arm_gps_checks(bool display_failure);
|
||||
bool pre_arm_ekf_attitude_check();
|
||||
bool pre_arm_rallypoint_check();
|
||||
bool pre_arm_terrain_check(bool display_failure);
|
||||
bool arm_checks(bool display_failure, bool arming_from_gcs);
|
||||
void init_disarm_motors();
|
||||
void motors_output();
|
||||
void lost_vehicle_check();
|
||||
|
@ -1,657 +0,0 @@
|
||||
#include "Sub.h"
|
||||
|
||||
// performs pre-arm checks. expects to be called at 1hz.
|
||||
void Sub::update_arming_checks(void)
|
||||
{
|
||||
// perform pre-arm checks & display failures every 30 seconds
|
||||
static uint8_t pre_arm_display_counter = PREARM_DISPLAY_PERIOD/2;
|
||||
pre_arm_display_counter++;
|
||||
bool display_fail = false;
|
||||
if (pre_arm_display_counter >= PREARM_DISPLAY_PERIOD) {
|
||||
display_fail = true;
|
||||
pre_arm_display_counter = 0;
|
||||
}
|
||||
|
||||
if (pre_arm_checks(display_fail)) {
|
||||
set_pre_arm_check(true);
|
||||
}
|
||||
}
|
||||
|
||||
// performs pre-arm checks and arming checks
|
||||
bool Sub::all_arming_checks_passing(bool arming_from_gcs)
|
||||
{
|
||||
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL
|
||||
if (failsafe.manual_control) {
|
||||
gcs_send_text(MAV_SEVERITY_WARNING, "Arming requires manual control");
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (pre_arm_checks(true)) {
|
||||
set_pre_arm_check(true);
|
||||
}
|
||||
|
||||
return ap.pre_arm_check && arm_checks(true, arming_from_gcs);
|
||||
}
|
||||
|
||||
// perform pre-arm checks and set ap.pre_arm_check flag
|
||||
// return true if the checks pass successfully
|
||||
bool Sub::pre_arm_checks(bool display_failure)
|
||||
{
|
||||
// exit immediately if already armed
|
||||
if (motors.armed()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// check if motor interlock and Emergency Stop aux switches are used
|
||||
// at the same time. This cannot be allowed.
|
||||
if (check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK) && check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Interlock/E-Stop Conflict");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check if motor interlock aux switch is in use
|
||||
// if it is, switch needs to be in disabled position to arm
|
||||
// otherwise exit immediately. This check to be repeated,
|
||||
// as state can change at any time.
|
||||
if (ap.using_interlock && motors.get_interlock()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Motor Interlock Enabled");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// exit immediately if we've already successfully performed the pre-arm check
|
||||
if (ap.pre_arm_check) {
|
||||
// run gps checks because results may change and affect LED colour
|
||||
// no need to display failures because arm_checks will do that if the pilot tries to arm
|
||||
pre_arm_gps_checks(false);
|
||||
return true;
|
||||
}
|
||||
|
||||
// succeed if pre arm checks are disabled
|
||||
if (g.arming_check == ARMING_CHECK_NONE) {
|
||||
set_pre_arm_check(true);
|
||||
set_pre_arm_rc_check(true);
|
||||
return true;
|
||||
}
|
||||
|
||||
// pre-arm rc checks a prerequisite
|
||||
pre_arm_rc_checks();
|
||||
if (!ap.pre_arm_rc_check) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: RC not calibrated");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// check Baro
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
|
||||
// barometer health check
|
||||
if (!barometer.all_healthy()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Barometer not healthy");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
|
||||
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
|
||||
// that may differ from the baro height due to baro drift.
|
||||
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
||||
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
|
||||
if (using_baro_ref) {
|
||||
if (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Altitude disparity");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check Compass
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) {
|
||||
// check the primary compass is healthy
|
||||
if (!compass.healthy()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not healthy");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check compass learning is on or offsets have been set
|
||||
if (!compass.configured()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not calibrated");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check for unreasonable compass offsets
|
||||
Vector3f offsets = compass.get_offsets();
|
||||
if (offsets.length() > COMPASS_OFFSETS_MAX) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass offsets too high");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check for unreasonable mag field length
|
||||
float mag_field = compass.get_field().length();
|
||||
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65f || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35f) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check mag field");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check all compasses point in roughly same direction
|
||||
if (!compass.consistent()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent compasses");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// check GPS
|
||||
if (!pre_arm_gps_checks(display_failure)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
#if AC_FENCE == ENABLED
|
||||
// check fence is initialised
|
||||
if (!fence.pre_arm_check()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check fence");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
// check INS
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
|
||||
// check accelerometers have been calibrated
|
||||
if (!ins.accel_calibrated_ok_all()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accels not calibrated");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check accels are healthy
|
||||
if (!ins.get_accel_health_all()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accelerometers not healthy");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
//check if accelerometers have calibrated and require reboot
|
||||
if (ins.accel_cal_requires_reboot()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check all accelerometers point in roughly same direction
|
||||
if (ins.get_accel_count() > 1) {
|
||||
const Vector3f &prime_accel_vec = ins.get_accel();
|
||||
for (uint8_t i=0; i<ins.get_accel_count(); i++) {
|
||||
// get next accel vector
|
||||
const Vector3f &accel_vec = ins.get_accel(i);
|
||||
Vector3f vec_diff = accel_vec - prime_accel_vec;
|
||||
float threshold = PREARM_MAX_ACCEL_VECTOR_DIFF;
|
||||
if (i >= 2) {
|
||||
/*
|
||||
* for boards with 3 IMUs we only use the first two
|
||||
* in the EKF. Allow for larger accel discrepancy
|
||||
* for IMU3 as it may be running at a different temperature
|
||||
*/
|
||||
threshold *= 2;
|
||||
}
|
||||
if (vec_diff.length() > threshold) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Accelerometers");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check gyros are healthy
|
||||
if (!ins.get_gyro_health_all()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Gyros not healthy");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check all gyros are consistent
|
||||
if (ins.get_gyro_count() > 1) {
|
||||
for (uint8_t i=0; i<ins.get_gyro_count(); i++) {
|
||||
// get rotation rate difference between gyro #i and primary gyro
|
||||
Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro();
|
||||
if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Gyros");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// get ekf attitude (if bad, it's usually the gyro biases)
|
||||
if (!pre_arm_ekf_attitude_check()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: gyros still settling");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
|
||||
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
|
||||
// check board voltage
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
|
||||
if (hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Board Voltage");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// check battery voltage
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
|
||||
if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Battery");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// check various parameter values
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
|
||||
|
||||
// ensure ch7 and ch8 have different functions
|
||||
if (check_duplicate_auxsw()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Duplicate Aux Switch Options");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// lean angle parameter check
|
||||
if (aparm.angle_max < 1000 || aparm.angle_max > 8000) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check ANGLE_MAX");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// acro balance parameter check
|
||||
if ((g.acro_balance_roll > attitude_control.get_angle_roll_p().kP()) || (g.acro_balance_pitch > attitude_control.get_angle_pitch_p().kP())) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: ACRO_BAL_ROLL/PITCH");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#if RANGEFINDER_ENABLED == ENABLED && OPTFLOW == ENABLED
|
||||
// check range finder if optflow enabled
|
||||
if (optflow.enabled() && !rangefinder.pre_arm_check()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check range finder");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
// check for missing terrain data
|
||||
if (!pre_arm_terrain_check(display_failure)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag
|
||||
void Sub::pre_arm_rc_checks()
|
||||
{
|
||||
// exit immediately if we've already successfully performed the pre-arm rc check
|
||||
if (ap.pre_arm_rc_check) {
|
||||
return;
|
||||
}
|
||||
|
||||
// set rc-checks to success if RC checks are disabled
|
||||
if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) {
|
||||
set_pre_arm_rc_check(true);
|
||||
return;
|
||||
}
|
||||
|
||||
// check if radio has been calibrated
|
||||
if (!channel_throttle->min_max_configured()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// check channels 1 & 2 have min <= 1300 and max >= 1700
|
||||
if (channel_roll->get_radio_min() > 1300 || channel_roll->get_radio_max() < 1700 || channel_pitch->get_radio_min() > 1300 || channel_pitch->get_radio_max() < 1700) {
|
||||
return;
|
||||
}
|
||||
|
||||
// check channels 3 & 4 have min <= 1300 and max >= 1700
|
||||
if (channel_throttle->get_radio_min() > 1300 || channel_throttle->get_radio_max() < 1700 || channel_yaw->get_radio_min() > 1300 || channel_yaw->get_radio_max() < 1700) {
|
||||
return;
|
||||
}
|
||||
|
||||
// check channels 1 & 2 have trim >= 1300 and <= 1700
|
||||
if (channel_roll->get_radio_trim() < 1300 || channel_roll->get_radio_trim() > 1700 || channel_pitch->get_radio_trim() < 1300 || channel_pitch->get_radio_trim() > 1700) {
|
||||
return;
|
||||
}
|
||||
|
||||
// check channel 4 has trim >= 1300 and <= 1700
|
||||
if (channel_yaw->get_radio_trim() < 1300 || channel_yaw->get_radio_trim() > 1700) {
|
||||
return;
|
||||
}
|
||||
|
||||
// if we've gotten this far rc is ok
|
||||
set_pre_arm_rc_check(true);
|
||||
}
|
||||
|
||||
// performs pre_arm gps related checks and returns true if passed
|
||||
bool Sub::pre_arm_gps_checks(bool display_failure)
|
||||
{
|
||||
// always check if inertial nav has started and is ready
|
||||
if (!ahrs.healthy()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Waiting for Nav Checks");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check if flight mode requires GPS
|
||||
bool gps_required = mode_requires_GPS(control_mode);
|
||||
|
||||
#if AC_FENCE == ENABLED
|
||||
// if circular fence is enabled we need GPS
|
||||
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) {
|
||||
gps_required = true;
|
||||
}
|
||||
#endif
|
||||
|
||||
// return true if GPS is not required
|
||||
if (!gps_required) {
|
||||
AP_Notify::flags.pre_arm_gps_check = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
// ensure GPS is ok
|
||||
if (!position_ok()) {
|
||||
if (display_failure) {
|
||||
const char *reason = ahrs.prearm_failure_reason();
|
||||
if (reason) {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: %s", reason);
|
||||
} else {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Need 3D Fix");
|
||||
}
|
||||
}
|
||||
AP_Notify::flags.pre_arm_gps_check = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// check EKF compass variance is below failsafe threshold
|
||||
float vel_variance, pos_variance, hgt_variance, tas_variance;
|
||||
Vector3f mag_variance;
|
||||
Vector2f offset;
|
||||
ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance, offset);
|
||||
if (mag_variance.length() >= g.fs_ekf_thresh) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF compass variance");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// check home and EKF origin are not too far
|
||||
if (far_from_EKF_origin(ahrs.get_home())) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF-home variance");
|
||||
}
|
||||
AP_Notify::flags.pre_arm_gps_check = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// return true immediately if gps check is disabled
|
||||
if (!(g.arming_check == ARMING_CHECK_ALL || g.arming_check & ARMING_CHECK_GPS)) {
|
||||
AP_Notify::flags.pre_arm_gps_check = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
// warn about hdop separately - to prevent user confusion with no gps lock
|
||||
if (gps.get_hdop() > g.gps_hdop_good) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: High GPS HDOP");
|
||||
}
|
||||
AP_Notify::flags.pre_arm_gps_check = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// if we got here all must be ok
|
||||
AP_Notify::flags.pre_arm_gps_check = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
// check ekf attitude is acceptable
|
||||
bool Sub::pre_arm_ekf_attitude_check()
|
||||
{
|
||||
// get ekf filter status
|
||||
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
||||
|
||||
return filt_status.flags.attitude;
|
||||
}
|
||||
|
||||
// check we have required terrain data
|
||||
bool Sub::pre_arm_terrain_check(bool display_failure)
|
||||
{
|
||||
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
|
||||
// succeed if not using terrain data
|
||||
if (!terrain_use()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// show terrain statistics
|
||||
uint16_t terr_pending, terr_loaded;
|
||||
terrain.get_statistics(terr_pending, terr_loaded);
|
||||
bool have_all_data = (terr_pending <= 0);
|
||||
if (!have_all_data && display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Waiting for Terrain data");
|
||||
}
|
||||
return have_all_data;
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
// arm_checks - perform final checks before arming
|
||||
// always called just before arming. Return true if ok to arm
|
||||
// has side-effect that logging is started
|
||||
bool Sub::arm_checks(bool display_failure, bool arming_from_gcs)
|
||||
{
|
||||
#if LOGGING_ENABLED == ENABLED
|
||||
// start dataflash
|
||||
start_logging();
|
||||
#endif
|
||||
|
||||
// check accels and gyro are healthy
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
|
||||
//check if accelerometers have calibrated and require reboot
|
||||
if (ins.accel_cal_requires_reboot()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!ins.get_accel_health_all()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Accelerometers not healthy");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
if (!ins.get_gyro_health_all()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Gyros not healthy");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// get ekf attitude (if bad, it's usually the gyro biases)
|
||||
if (!pre_arm_ekf_attitude_check()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: gyros still settling");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// always check if inertial nav has started and is ready
|
||||
if (!ahrs.healthy()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Waiting for Nav Checks");
|
||||
}
|
||||
ahrs.reset(); // This will fix the altitude hang; ToDo: figure out what is actually causing the hang
|
||||
return false;
|
||||
}
|
||||
|
||||
if (compass.is_calibrating()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Compass calibration running");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// always check if the current mode allows arming
|
||||
if (!mode_allows_arming(control_mode, arming_from_gcs)) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Mode not armable");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// always check gps
|
||||
if (!pre_arm_gps_checks(display_failure)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// if we are using motor interlock switch and it's enabled, fail to arm
|
||||
if (ap.using_interlock && motors.get_interlock()) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Interlock Enabled");
|
||||
return false;
|
||||
}
|
||||
|
||||
// if we are not using Emergency Stop switch option, force Estop false to ensure motors
|
||||
// can run normally
|
||||
if (!check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)) {
|
||||
set_motor_emergency_stop(false);
|
||||
// if we are using motor Estop switch, it must not be in Estop position
|
||||
} else if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Emergency Stopped");
|
||||
return false;
|
||||
}
|
||||
|
||||
// succeed if arming checks are disabled
|
||||
if (g.arming_check == ARMING_CHECK_NONE) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// baro checks
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
|
||||
// baro health check
|
||||
if (!barometer.all_healthy()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Barometer not healthy");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
|
||||
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
|
||||
// that may differ from the baro height due to baro drift.
|
||||
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
||||
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
|
||||
if (using_baro_ref && (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM)) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Altitude disparity");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#if AC_FENCE == ENABLED
|
||||
// check vehicle is within fence
|
||||
if (!fence.pre_arm_check()) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: check fence");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
// check lean angle
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
|
||||
if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > aparm.angle_max) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Leaning");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// check battery voltage
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
|
||||
if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Check Battery");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// check for missing terrain data
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
|
||||
if (!pre_arm_terrain_check(display_failure)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// check throttle
|
||||
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
|
||||
// check throttle is not too low - must be above failsafe throttle
|
||||
|
||||
// check throttle is not too high - skips checks if arming from GCS in Guided
|
||||
if (!(arming_from_gcs && control_mode == GUIDED)) {
|
||||
// in manual modes throttle must be at zero
|
||||
if ((mode_has_manual_throttle(control_mode)) && channel_throttle->get_control_in() > 0) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle too high");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check if safety switch has been pushed
|
||||
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
|
||||
if (display_failure) {
|
||||
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Safety Switch");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// if we've gotten this far all is ok
|
||||
return true;
|
||||
}
|
@ -52,9 +52,7 @@ uint8_t Sub::mavlink_compassmot(mavlink_channel_t chan)
|
||||
}
|
||||
|
||||
// check if radio is calibrated
|
||||
pre_arm_rc_checks();
|
||||
if (!ap.pre_arm_rc_check) {
|
||||
gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "RC not calibrated");
|
||||
if (!arming.rc_check()) {
|
||||
ap.compass_mot = false;
|
||||
return 1;
|
||||
}
|
||||
|
@ -393,17 +393,6 @@ enum LoiterModeState {
|
||||
// Baro specific error codes
|
||||
#define ERROR_CODE_BARO_GLITCH 2
|
||||
|
||||
// Arming Check Enable/Disable bits
|
||||
#define ARMING_CHECK_NONE 0x00
|
||||
#define ARMING_CHECK_ALL 0x01
|
||||
#define ARMING_CHECK_BARO 0x02
|
||||
#define ARMING_CHECK_COMPASS 0x04
|
||||
#define ARMING_CHECK_GPS 0x08
|
||||
#define ARMING_CHECK_INS 0x10
|
||||
#define ARMING_CHECK_PARAMETERS 0x20
|
||||
#define ARMING_CHECK_RC 0x40
|
||||
#define ARMING_CHECK_VOLTAGE 0x80
|
||||
|
||||
// Radio failsafe definitions (FS_THR parameter)
|
||||
#define FS_THR_DISABLED 0
|
||||
#define FS_THR_ENABLED_ALWAYS_RTL 1
|
||||
|
@ -19,8 +19,7 @@ enum ESCCalibrationModes {
|
||||
void Sub::esc_calibration_startup_check()
|
||||
{
|
||||
// exit immediately if pre-arm rc checks fail
|
||||
pre_arm_rc_checks();
|
||||
if (!ap.pre_arm_rc_check) {
|
||||
if (!arming.rc_check()) {
|
||||
// clear esc flag for next time
|
||||
if ((g.esc_calibrate != ESCCAL_NONE) && (g.esc_calibrate != ESCCAL_DISABLED)) {
|
||||
g.esc_calibrate.set_and_save(ESCCAL_NONE);
|
||||
|
@ -67,9 +67,7 @@ void Sub::motor_test_output()
|
||||
bool Sub::mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc)
|
||||
{
|
||||
// check rc has been calibrated
|
||||
pre_arm_rc_checks();
|
||||
if (check_rc && !ap.pre_arm_rc_check) {
|
||||
gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL,"Motor Test: RC not calibrated");
|
||||
if (check_rc && !arming.rc_check()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -44,10 +44,10 @@ bool Sub::init_arm_motors(bool arming_from_gcs)
|
||||
if (in_arm_motors) {
|
||||
return false;
|
||||
}
|
||||
|
||||
in_arm_motors = true;
|
||||
|
||||
// run pre-arm-checks and display failures
|
||||
if (!all_arming_checks_passing(arming_from_gcs)) {
|
||||
if (!arming.pre_arm_checks(true)) {
|
||||
AP_Notify::events.arming_failed = true;
|
||||
in_arm_motors = false;
|
||||
return false;
|
||||
|
@ -76,8 +76,7 @@ void Sub::init_rc_out()
|
||||
esc_calibration_startup_check();
|
||||
|
||||
// enable output to motors
|
||||
pre_arm_rc_checks();
|
||||
if (ap.pre_arm_rc_check) {
|
||||
if (arming.rc_check()) {
|
||||
enable_motor_output();
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user