Sub: Move arming checks under AP_Arming_Sub

This commit is contained in:
Jacob Walser 2017-02-28 23:05:51 -05:00 committed by jaxxzer
parent d21cd513cd
commit a62d728933
12 changed files with 78 additions and 722 deletions

View File

@ -5,3 +5,49 @@ enum HomeState AP_Arming_Sub::home_status() const
{ {
return sub.ap.home_state; return sub.ap.home_state;
} }
bool AP_Arming_Sub::rc_check(bool report)
{
// set rc-checks to success if RC checks are disabled
if ((checks_to_perform != ARMING_CHECK_ALL) && !(checks_to_perform & ARMING_CHECK_RC)) {
return true;
}
static const char* message_fail = "PreArm: Check RC min/max parameters";
bool ret = true;
// check channels 1 & 2 have min <= 1300 and max >= 1700
if (sub.channel_roll->get_radio_min() > 1300 || sub.channel_roll->get_radio_max() < 1700 || sub.channel_pitch->get_radio_min() > 1300 || sub.channel_pitch->get_radio_max() < 1700) {
ret = false;
}
// check channels 3 & 4 have min <= 1300 and max >= 1700
if (sub.channel_throttle->get_radio_min() > 1300 || sub.channel_throttle->get_radio_max() < 1700 || sub.channel_yaw->get_radio_min() > 1300 || sub.channel_yaw->get_radio_max() < 1700) {
ret = false;
}
// check channels 1 & 2 have trim >= 1300 and <= 1700
if (sub.channel_roll->get_radio_trim() < 1300 || sub.channel_roll->get_radio_trim() > 1700 || sub.channel_pitch->get_radio_trim() < 1300 || sub.channel_pitch->get_radio_trim() > 1700) {
ret = false;
}
// check channel 4 has trim >= 1300 and <= 1700
if (sub.channel_yaw->get_radio_trim() < 1300 || sub.channel_yaw->get_radio_trim() > 1700) {
ret = false;
}
if (report && !ret) {
sub.gcs_send_text(MAV_SEVERITY_CRITICAL, message_fail);
}
return ret;
}
bool AP_Arming_Sub::pre_arm_checks(bool report)
{
if (armed) {
return true;
}
return AP_Arming::pre_arm_checks(report) & rc_check(report);
}

View File

@ -10,6 +10,9 @@ public:
AP_Param::setup_object_defaults(this, var_info); AP_Param::setup_object_defaults(this, var_info);
} }
bool rc_check(bool report=true);
bool pre_arm_checks(bool report) override;
protected: protected:
enum HomeState home_status() const override; enum HomeState home_status() const override;
}; };

View File

@ -74,13 +74,6 @@ void Sub::set_pre_arm_check(bool b)
} }
} }
void Sub::set_pre_arm_rc_check(bool b)
{
if (ap.pre_arm_rc_check != b) {
ap.pre_arm_rc_check = b;
}
}
void Sub::update_using_interlock() void Sub::update_using_interlock()
{ {
// check if we are using motor interlock control on an aux switch // check if we are using motor interlock control on an aux switch

View File

@ -372,12 +372,12 @@ void Sub::three_hz_loop()
// one_hz_loop - runs at 1Hz // one_hz_loop - runs at 1Hz
void Sub::one_hz_loop() void Sub::one_hz_loop()
{ {
AP_Notify::flags.pre_arm_check = arming.pre_arm_checks(false);
if (should_log(MASK_LOG_ANY)) { if (should_log(MASK_LOG_ANY)) {
Log_Write_Data(DATA_AP_STATE, ap.value); Log_Write_Data(DATA_AP_STATE, ap.value);
} }
update_arming_checks();
if (!motors.armed()) { if (!motors.armed()) {
// make it possible to change ahrs orientation at runtime during initial config // make it possible to change ahrs orientation at runtime during initial config
ahrs.set_orientation(); ahrs.set_orientation();

View File

@ -230,31 +230,29 @@ private:
# include USERHOOK_VARIABLES # include USERHOOK_VARIABLES
#endif #endif
// Documentation of GLobals: // Documentation of Globals:
union { union {
struct { struct {
uint8_t unused1 : 1; // 0 uint8_t simple_mode : 2; // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE uint8_t pre_arm_check : 1; // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully uint8_t auto_armed : 1; // stops auto missions from beginning until throttle is raised
uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed uint8_t logging_started : 1; // true if dataflash logging has started
uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised uint8_t new_radio_frame : 1; // Set true if we have new PWM data to act on from the Radio
uint8_t logging_started : 1; // 6 // true if dataflash logging has started uint8_t usb_connected : 1; // true if APM is powered from USB connection
uint8_t new_radio_frame : 1; // 8 // Set true if we have new PWM data to act on from the Radio uint8_t rc_receiver_present : 1; // true if we have an rc receiver present (i.e. if we've ever received an update
uint8_t usb_connected : 1; // 9 // true if APM is powered from USB connection uint8_t compass_mot : 1; // true if we are currently performing compassmot calibration
uint8_t rc_receiver_present : 1; // 10 // true if we have an rc receiver present (i.e. if we've ever received an update uint8_t motor_test : 1; // true if we are currently performing the motors test
uint8_t compass_mot : 1; // 11 // true if we are currently performing compassmot calibration uint8_t initialised : 1; // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes
uint8_t motor_test : 1; // 12 // true if we are currently performing the motors test uint8_t throttle_zero : 1; // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down when not using motor interlock
uint8_t initialised : 1; // 13 // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes uint8_t system_time_set : 1; // true if the system time has been set from the GPS
uint8_t throttle_zero : 1; // 15 // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down when not using motor interlock uint8_t gps_base_pos_set : 1; // true when the gps base position has been set (used for RTK gps only)
uint8_t system_time_set : 1; // 16 // true if the system time has been set from the GPS enum HomeState home_state : 2; // home status (unset, set, locked)
uint8_t gps_base_pos_set : 1; // 17 // true when the gps base position has been set (used for RTK gps only) uint8_t using_interlock : 1; // aux switch motor interlock function is in use
enum HomeState home_state : 2; // 18,19 // home status (unset, set, locked) uint8_t motor_emergency_stop: 1; // motor estop switch, shuts off motors when enabled
uint8_t using_interlock : 1; // 20 // aux switch motor interlock function is in use uint8_t land_repo_active : 1; // true if the pilot is overriding the landing position
uint8_t motor_emergency_stop: 1; // 21 // motor estop switch, shuts off motors when enabled uint8_t at_bottom : 1; // true if we are at the bottom
uint8_t land_repo_active : 1; // 22 // true if the pilot is overriding the landing position uint8_t at_surface : 1; // true if we are at the surface
uint8_t at_bottom : 1; // true if we are at the bottom uint8_t depth_sensor_present: 1; // true if we have an external baro connected
uint8_t at_surface : 1; // true if we are at the surface
uint8_t depth_sensor_present: 1; // true if we have an external baro connected
}; };
uint32_t value; uint32_t value;
} ap; } ap;
@ -510,7 +508,6 @@ private:
void set_simple_mode(uint8_t b); void set_simple_mode(uint8_t b);
void set_failsafe_battery(bool b); void set_failsafe_battery(bool b);
void set_pre_arm_check(bool b); void set_pre_arm_check(bool b);
void set_pre_arm_rc_check(bool b);
void update_using_interlock(); void update_using_interlock();
void set_motor_emergency_stop(bool b); void set_motor_emergency_stop(bool b);
float get_smoothing_gain(); float get_smoothing_gain();
@ -727,15 +724,6 @@ private:
void motor_test_stop(); void motor_test_stop();
void auto_disarm_check(); void auto_disarm_check();
bool init_arm_motors(bool arming_from_gcs); bool init_arm_motors(bool arming_from_gcs);
void update_arming_checks(void);
bool all_arming_checks_passing(bool arming_from_gcs);
bool pre_arm_checks(bool display_failure);
void pre_arm_rc_checks();
bool pre_arm_gps_checks(bool display_failure);
bool pre_arm_ekf_attitude_check();
bool pre_arm_rallypoint_check();
bool pre_arm_terrain_check(bool display_failure);
bool arm_checks(bool display_failure, bool arming_from_gcs);
void init_disarm_motors(); void init_disarm_motors();
void motors_output(); void motors_output();
void lost_vehicle_check(); void lost_vehicle_check();

View File

@ -1,657 +0,0 @@
#include "Sub.h"
// performs pre-arm checks. expects to be called at 1hz.
void Sub::update_arming_checks(void)
{
// perform pre-arm checks & display failures every 30 seconds
static uint8_t pre_arm_display_counter = PREARM_DISPLAY_PERIOD/2;
pre_arm_display_counter++;
bool display_fail = false;
if (pre_arm_display_counter >= PREARM_DISPLAY_PERIOD) {
display_fail = true;
pre_arm_display_counter = 0;
}
if (pre_arm_checks(display_fail)) {
set_pre_arm_check(true);
}
}
// performs pre-arm checks and arming checks
bool Sub::all_arming_checks_passing(bool arming_from_gcs)
{
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL
if (failsafe.manual_control) {
gcs_send_text(MAV_SEVERITY_WARNING, "Arming requires manual control");
return false;
}
#endif
if (pre_arm_checks(true)) {
set_pre_arm_check(true);
}
return ap.pre_arm_check && arm_checks(true, arming_from_gcs);
}
// perform pre-arm checks and set ap.pre_arm_check flag
// return true if the checks pass successfully
bool Sub::pre_arm_checks(bool display_failure)
{
// exit immediately if already armed
if (motors.armed()) {
return true;
}
// check if motor interlock and Emergency Stop aux switches are used
// at the same time. This cannot be allowed.
if (check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK) && check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Interlock/E-Stop Conflict");
}
return false;
}
// check if motor interlock aux switch is in use
// if it is, switch needs to be in disabled position to arm
// otherwise exit immediately. This check to be repeated,
// as state can change at any time.
if (ap.using_interlock && motors.get_interlock()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Motor Interlock Enabled");
}
return false;
}
// exit immediately if we've already successfully performed the pre-arm check
if (ap.pre_arm_check) {
// run gps checks because results may change and affect LED colour
// no need to display failures because arm_checks will do that if the pilot tries to arm
pre_arm_gps_checks(false);
return true;
}
// succeed if pre arm checks are disabled
if (g.arming_check == ARMING_CHECK_NONE) {
set_pre_arm_check(true);
set_pre_arm_rc_check(true);
return true;
}
// pre-arm rc checks a prerequisite
pre_arm_rc_checks();
if (!ap.pre_arm_rc_check) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: RC not calibrated");
}
return false;
}
// check Baro
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
// barometer health check
if (!barometer.all_healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Barometer not healthy");
}
return false;
}
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (using_baro_ref) {
if (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Altitude disparity");
}
return false;
}
}
}
// check Compass
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) {
// check the primary compass is healthy
if (!compass.healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not healthy");
}
return false;
}
// check compass learning is on or offsets have been set
if (!compass.configured()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not calibrated");
}
return false;
}
// check for unreasonable compass offsets
Vector3f offsets = compass.get_offsets();
if (offsets.length() > COMPASS_OFFSETS_MAX) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass offsets too high");
}
return false;
}
// check for unreasonable mag field length
float mag_field = compass.get_field().length();
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65f || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35f) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check mag field");
}
return false;
}
// check all compasses point in roughly same direction
if (!compass.consistent()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent compasses");
}
return false;
}
}
// check GPS
if (!pre_arm_gps_checks(display_failure)) {
return false;
}
#if AC_FENCE == ENABLED
// check fence is initialised
if (!fence.pre_arm_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check fence");
}
return false;
}
#endif
// check INS
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
// check accelerometers have been calibrated
if (!ins.accel_calibrated_ok_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accels not calibrated");
}
return false;
}
// check accels are healthy
if (!ins.get_accel_health_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accelerometers not healthy");
}
return false;
}
//check if accelerometers have calibrated and require reboot
if (ins.accel_cal_requires_reboot()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot");
}
return false;
}
// check all accelerometers point in roughly same direction
if (ins.get_accel_count() > 1) {
const Vector3f &prime_accel_vec = ins.get_accel();
for (uint8_t i=0; i<ins.get_accel_count(); i++) {
// get next accel vector
const Vector3f &accel_vec = ins.get_accel(i);
Vector3f vec_diff = accel_vec - prime_accel_vec;
float threshold = PREARM_MAX_ACCEL_VECTOR_DIFF;
if (i >= 2) {
/*
* for boards with 3 IMUs we only use the first two
* in the EKF. Allow for larger accel discrepancy
* for IMU3 as it may be running at a different temperature
*/
threshold *= 2;
}
if (vec_diff.length() > threshold) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Accelerometers");
}
return false;
}
}
}
// check gyros are healthy
if (!ins.get_gyro_health_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Gyros not healthy");
}
return false;
}
// check all gyros are consistent
if (ins.get_gyro_count() > 1) {
for (uint8_t i=0; i<ins.get_gyro_count(); i++) {
// get rotation rate difference between gyro #i and primary gyro
Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro();
if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Gyros");
}
return false;
}
}
}
// get ekf attitude (if bad, it's usually the gyro biases)
if (!pre_arm_ekf_attitude_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: gyros still settling");
}
return false;
}
}
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
// check board voltage
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
if (hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Board Voltage");
}
return false;
}
}
#endif
#endif
// check battery voltage
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Battery");
}
return false;
}
}
// check various parameter values
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
// ensure ch7 and ch8 have different functions
if (check_duplicate_auxsw()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Duplicate Aux Switch Options");
}
return false;
}
// lean angle parameter check
if (aparm.angle_max < 1000 || aparm.angle_max > 8000) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check ANGLE_MAX");
}
return false;
}
// acro balance parameter check
if ((g.acro_balance_roll > attitude_control.get_angle_roll_p().kP()) || (g.acro_balance_pitch > attitude_control.get_angle_pitch_p().kP())) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: ACRO_BAL_ROLL/PITCH");
}
return false;
}
#if RANGEFINDER_ENABLED == ENABLED && OPTFLOW == ENABLED
// check range finder if optflow enabled
if (optflow.enabled() && !rangefinder.pre_arm_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check range finder");
}
return false;
}
#endif
// check for missing terrain data
if (!pre_arm_terrain_check(display_failure)) {
return false;
}
}
return true;
}
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag
void Sub::pre_arm_rc_checks()
{
// exit immediately if we've already successfully performed the pre-arm rc check
if (ap.pre_arm_rc_check) {
return;
}
// set rc-checks to success if RC checks are disabled
if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) {
set_pre_arm_rc_check(true);
return;
}
// check if radio has been calibrated
if (!channel_throttle->min_max_configured()) {
return;
}
// check channels 1 & 2 have min <= 1300 and max >= 1700
if (channel_roll->get_radio_min() > 1300 || channel_roll->get_radio_max() < 1700 || channel_pitch->get_radio_min() > 1300 || channel_pitch->get_radio_max() < 1700) {
return;
}
// check channels 3 & 4 have min <= 1300 and max >= 1700
if (channel_throttle->get_radio_min() > 1300 || channel_throttle->get_radio_max() < 1700 || channel_yaw->get_radio_min() > 1300 || channel_yaw->get_radio_max() < 1700) {
return;
}
// check channels 1 & 2 have trim >= 1300 and <= 1700
if (channel_roll->get_radio_trim() < 1300 || channel_roll->get_radio_trim() > 1700 || channel_pitch->get_radio_trim() < 1300 || channel_pitch->get_radio_trim() > 1700) {
return;
}
// check channel 4 has trim >= 1300 and <= 1700
if (channel_yaw->get_radio_trim() < 1300 || channel_yaw->get_radio_trim() > 1700) {
return;
}
// if we've gotten this far rc is ok
set_pre_arm_rc_check(true);
}
// performs pre_arm gps related checks and returns true if passed
bool Sub::pre_arm_gps_checks(bool display_failure)
{
// always check if inertial nav has started and is ready
if (!ahrs.healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Waiting for Nav Checks");
}
return false;
}
// check if flight mode requires GPS
bool gps_required = mode_requires_GPS(control_mode);
#if AC_FENCE == ENABLED
// if circular fence is enabled we need GPS
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) {
gps_required = true;
}
#endif
// return true if GPS is not required
if (!gps_required) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// ensure GPS is ok
if (!position_ok()) {
if (display_failure) {
const char *reason = ahrs.prearm_failure_reason();
if (reason) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: %s", reason);
} else {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Need 3D Fix");
}
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// check EKF compass variance is below failsafe threshold
float vel_variance, pos_variance, hgt_variance, tas_variance;
Vector3f mag_variance;
Vector2f offset;
ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance, offset);
if (mag_variance.length() >= g.fs_ekf_thresh) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF compass variance");
}
return false;
}
// check home and EKF origin are not too far
if (far_from_EKF_origin(ahrs.get_home())) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF-home variance");
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// return true immediately if gps check is disabled
if (!(g.arming_check == ARMING_CHECK_ALL || g.arming_check & ARMING_CHECK_GPS)) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// warn about hdop separately - to prevent user confusion with no gps lock
if (gps.get_hdop() > g.gps_hdop_good) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: High GPS HDOP");
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// if we got here all must be ok
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// check ekf attitude is acceptable
bool Sub::pre_arm_ekf_attitude_check()
{
// get ekf filter status
nav_filter_status filt_status = inertial_nav.get_filter_status();
return filt_status.flags.attitude;
}
// check we have required terrain data
bool Sub::pre_arm_terrain_check(bool display_failure)
{
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
// succeed if not using terrain data
if (!terrain_use()) {
return true;
}
// show terrain statistics
uint16_t terr_pending, terr_loaded;
terrain.get_statistics(terr_pending, terr_loaded);
bool have_all_data = (terr_pending <= 0);
if (!have_all_data && display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Waiting for Terrain data");
}
return have_all_data;
#else
return true;
#endif
}
// arm_checks - perform final checks before arming
// always called just before arming. Return true if ok to arm
// has side-effect that logging is started
bool Sub::arm_checks(bool display_failure, bool arming_from_gcs)
{
#if LOGGING_ENABLED == ENABLED
// start dataflash
start_logging();
#endif
// check accels and gyro are healthy
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
//check if accelerometers have calibrated and require reboot
if (ins.accel_cal_requires_reboot()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot");
}
return false;
}
if (!ins.get_accel_health_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Accelerometers not healthy");
}
return false;
}
if (!ins.get_gyro_health_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Gyros not healthy");
}
return false;
}
// get ekf attitude (if bad, it's usually the gyro biases)
if (!pre_arm_ekf_attitude_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: gyros still settling");
}
return false;
}
}
// always check if inertial nav has started and is ready
if (!ahrs.healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Waiting for Nav Checks");
}
ahrs.reset(); // This will fix the altitude hang; ToDo: figure out what is actually causing the hang
return false;
}
if (compass.is_calibrating()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Compass calibration running");
}
return false;
}
// always check if the current mode allows arming
if (!mode_allows_arming(control_mode, arming_from_gcs)) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Mode not armable");
}
return false;
}
// always check gps
if (!pre_arm_gps_checks(display_failure)) {
return false;
}
// if we are using motor interlock switch and it's enabled, fail to arm
if (ap.using_interlock && motors.get_interlock()) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Interlock Enabled");
return false;
}
// if we are not using Emergency Stop switch option, force Estop false to ensure motors
// can run normally
if (!check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)) {
set_motor_emergency_stop(false);
// if we are using motor Estop switch, it must not be in Estop position
} else if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Emergency Stopped");
return false;
}
// succeed if arming checks are disabled
if (g.arming_check == ARMING_CHECK_NONE) {
return true;
}
// baro checks
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
// baro health check
if (!barometer.all_healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Barometer not healthy");
}
return false;
}
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (using_baro_ref && (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM)) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Altitude disparity");
}
return false;
}
}
#if AC_FENCE == ENABLED
// check vehicle is within fence
if (!fence.pre_arm_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: check fence");
}
return false;
}
#endif
// check lean angle
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > aparm.angle_max) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Leaning");
}
return false;
}
}
// check battery voltage
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Check Battery");
}
return false;
}
}
// check for missing terrain data
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
if (!pre_arm_terrain_check(display_failure)) {
return false;
}
}
// check throttle
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
// check throttle is not too low - must be above failsafe throttle
// check throttle is not too high - skips checks if arming from GCS in Guided
if (!(arming_from_gcs && control_mode == GUIDED)) {
// in manual modes throttle must be at zero
if ((mode_has_manual_throttle(control_mode)) && channel_throttle->get_control_in() > 0) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle too high");
}
return false;
}
}
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Safety Switch");
}
return false;
}
// if we've gotten this far all is ok
return true;
}

View File

@ -52,9 +52,7 @@ uint8_t Sub::mavlink_compassmot(mavlink_channel_t chan)
} }
// check if radio is calibrated // check if radio is calibrated
pre_arm_rc_checks(); if (!arming.rc_check()) {
if (!ap.pre_arm_rc_check) {
gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "RC not calibrated");
ap.compass_mot = false; ap.compass_mot = false;
return 1; return 1;
} }

View File

@ -393,17 +393,6 @@ enum LoiterModeState {
// Baro specific error codes // Baro specific error codes
#define ERROR_CODE_BARO_GLITCH 2 #define ERROR_CODE_BARO_GLITCH 2
// Arming Check Enable/Disable bits
#define ARMING_CHECK_NONE 0x00
#define ARMING_CHECK_ALL 0x01
#define ARMING_CHECK_BARO 0x02
#define ARMING_CHECK_COMPASS 0x04
#define ARMING_CHECK_GPS 0x08
#define ARMING_CHECK_INS 0x10
#define ARMING_CHECK_PARAMETERS 0x20
#define ARMING_CHECK_RC 0x40
#define ARMING_CHECK_VOLTAGE 0x80
// Radio failsafe definitions (FS_THR parameter) // Radio failsafe definitions (FS_THR parameter)
#define FS_THR_DISABLED 0 #define FS_THR_DISABLED 0
#define FS_THR_ENABLED_ALWAYS_RTL 1 #define FS_THR_ENABLED_ALWAYS_RTL 1

View File

@ -19,8 +19,7 @@ enum ESCCalibrationModes {
void Sub::esc_calibration_startup_check() void Sub::esc_calibration_startup_check()
{ {
// exit immediately if pre-arm rc checks fail // exit immediately if pre-arm rc checks fail
pre_arm_rc_checks(); if (!arming.rc_check()) {
if (!ap.pre_arm_rc_check) {
// clear esc flag for next time // clear esc flag for next time
if ((g.esc_calibrate != ESCCAL_NONE) && (g.esc_calibrate != ESCCAL_DISABLED)) { if ((g.esc_calibrate != ESCCAL_NONE) && (g.esc_calibrate != ESCCAL_DISABLED)) {
g.esc_calibrate.set_and_save(ESCCAL_NONE); g.esc_calibrate.set_and_save(ESCCAL_NONE);

View File

@ -67,9 +67,7 @@ void Sub::motor_test_output()
bool Sub::mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc) bool Sub::mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc)
{ {
// check rc has been calibrated // check rc has been calibrated
pre_arm_rc_checks(); if (check_rc && !arming.rc_check()) {
if (check_rc && !ap.pre_arm_rc_check) {
gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL,"Motor Test: RC not calibrated");
return false; return false;
} }

View File

@ -44,10 +44,10 @@ bool Sub::init_arm_motors(bool arming_from_gcs)
if (in_arm_motors) { if (in_arm_motors) {
return false; return false;
} }
in_arm_motors = true; in_arm_motors = true;
// run pre-arm-checks and display failures if (!arming.pre_arm_checks(true)) {
if (!all_arming_checks_passing(arming_from_gcs)) {
AP_Notify::events.arming_failed = true; AP_Notify::events.arming_failed = true;
in_arm_motors = false; in_arm_motors = false;
return false; return false;

View File

@ -76,8 +76,7 @@ void Sub::init_rc_out()
esc_calibration_startup_check(); esc_calibration_startup_check();
// enable output to motors // enable output to motors
pre_arm_rc_checks(); if (arming.rc_check()) {
if (ap.pre_arm_rc_check) {
enable_motor_output(); enable_motor_output();
} }