AP_MotorsUGV: add asymmetry factor for skid-steering

Co-authored-by: Iampete1 <iampete@hotmail.co.uk>
This commit is contained in:
Willian Galvani 2023-06-28 10:59:41 -03:00 committed by Randy Mackay
parent b2180e037f
commit a61ad60c86
2 changed files with 68 additions and 7 deletions

View File

@ -110,6 +110,13 @@ const AP_Param::GroupInfo AP_MotorsUGV::var_info[] = {
// @User: Standard // @User: Standard
AP_GROUPINFO("VEC_ANGLEMAX", 13, AP_MotorsUGV, _vector_angle_max, 0.0f), AP_GROUPINFO("VEC_ANGLEMAX", 13, AP_MotorsUGV, _vector_angle_max, 0.0f),
// @Param: THST_ASYM
// @DisplayName: Motor Thrust Asymmetry
// @Description: Thrust Asymetry. Used for skid-steering. 2.0 means your motors move twice as fast forward than they do backwards.
// @Range: 1.0 10.0
// @User: Advanced
AP_GROUPINFO("THST_ASYM", 14, AP_MotorsUGV, _thrust_asymmetry, 1.0f),
AP_GROUPEND AP_GROUPEND
}; };
@ -729,12 +736,43 @@ void AP_MotorsUGV::output_skid_steering(bool armed, float steering, float thrott
float steering_scaled = steering / 4500.0f; // steering scaled -1 to +1 float steering_scaled = steering / 4500.0f; // steering scaled -1 to +1
float throttle_scaled = throttle * 0.01f; // throttle scaled -1 to +1 float throttle_scaled = throttle * 0.01f; // throttle scaled -1 to +1
// sanitize values for asymmetry of thrust, mixer assumes forward thrust is always larger than reverse
const float thrust_asymmetry = MAX(_thrust_asymmetry, 1.0);
const float lower_throttle_limit = -1.0 / thrust_asymmetry;
// Maximum steering is half way between upper and lower limits
const float best_steering_throttle = (1.0 + lower_throttle_limit) * 0.5;
float steering_range;
if (throttle_scaled < best_steering_throttle) {
// steering range is reduced as throttle will never be increased by mixer
steering_range = MAX(throttle_scaled,0.0) - lower_throttle_limit;
} else {
// full range available, throttle can always be lowered down to best_steering_throttle
steering_range = 1 - best_steering_throttle;
}
// apply constraints // apply constraints
steering_scaled = constrain_float(steering_scaled, -1.0f, 1.0f); if (steering_scaled > steering_range) {
throttle_scaled = constrain_float(throttle_scaled, -1.0f, 1.0f); limit.steer_right = true;
steering_scaled = steering_range;
} else if (steering_scaled < -steering_range) {
limit.steer_left = true;
steering_scaled = -steering_range;
}
if (throttle_scaled > 1.0) {
limit.throttle_upper = true;
throttle_scaled = 1.0;
} else if (throttle_scaled < lower_throttle_limit) {
limit.throttle_lower = true;
throttle_scaled = lower_throttle_limit;
}
// All throttle or all steering will now fit, check if they will both fit together
const float max_output = throttle_scaled + fabsf(steering_scaled);
const float min_output = throttle_scaled - fabsf(steering_scaled);
// check for saturation and scale back throttle and steering proportionally // check for saturation and scale back throttle and steering proportionally
const float saturation_value = fabsf(steering_scaled) + fabsf(throttle_scaled); const float saturation_value = MAX(max_output, min_output / lower_throttle_limit);
if (saturation_value > 1.0f) { if (saturation_value > 1.0f) {
// store pre-scaled values so we can set limit flags afterwards // store pre-scaled values so we can set limit flags afterwards
const float steering_scaled_orig = steering_scaled; const float steering_scaled_orig = steering_scaled;
@ -745,11 +783,25 @@ void AP_MotorsUGV::output_skid_steering(bool armed, float steering, float thrott
if (str_thr_mix >= 0.5f) { if (str_thr_mix >= 0.5f) {
// prioritise steering over throttle // prioritise steering over throttle
steering_scaled *= linear_interpolate(fair_scaler, 1.0f, str_thr_mix, 0.5f, 1.0f); steering_scaled *= linear_interpolate(fair_scaler, 1.0f, str_thr_mix, 0.5f, 1.0f);
throttle_scaled = (1.0f - fabsf(steering_scaled)) * (is_negative(throttle_scaled) ? -1.0f : 1.0f); if (throttle_scaled >= best_steering_throttle) {
// constrained by upper limit
throttle_scaled = 1.0 - fabsf(steering_scaled);
} else {
// constrained by lower limit
throttle_scaled = fabsf(steering_scaled) + lower_throttle_limit;
}
} else { } else {
// prioritise throttle over steering // prioritise throttle over steering
throttle_scaled *= linear_interpolate(fair_scaler, 1.0f, 0.5f - str_thr_mix, 0.0f, 0.5f); throttle_scaled *= linear_interpolate(fair_scaler, 1.0f, 0.5f - str_thr_mix, 0.0f, 0.5f);
steering_scaled = (1.0f - fabsf(throttle_scaled)) * (is_negative(steering_scaled) ? -1.0f : 1.0f); const float steering_sign = is_positive(steering_scaled) ? 1.0 : -1.0;
if (throttle_scaled >= best_steering_throttle) {
// constrained by upper limit
steering_scaled = (1.0 - throttle_scaled) * steering_sign;
} else {
// constrained by lower limit
steering_scaled = (throttle_scaled - lower_throttle_limit) * steering_sign;
}
} }
// update limits if either steering or throttle has been reduced // update limits if either steering or throttle has been reduced
@ -764,8 +816,16 @@ void AP_MotorsUGV::output_skid_steering(bool armed, float steering, float thrott
} }
// add in throttle and steering // add in throttle and steering
const float motor_left = throttle_scaled + steering_scaled; float motor_left = throttle_scaled + steering_scaled;
const float motor_right = throttle_scaled - steering_scaled; float motor_right = throttle_scaled - steering_scaled;
// Apply asymmetry correction
if (is_negative(motor_right)) {
motor_right *= thrust_asymmetry;
}
if (is_negative(motor_left)) {
motor_left *= thrust_asymmetry;
}
// send pwm value to each motor // send pwm value to each motor
output_throttle(SRV_Channel::k_throttleLeft, 100.0f * motor_left, dt); output_throttle(SRV_Channel::k_throttleLeft, 100.0f * motor_left, dt);

View File

@ -203,6 +203,7 @@ private:
AP_Int8 _throttle_min; // throttle minimum percentage AP_Int8 _throttle_min; // throttle minimum percentage
AP_Int8 _throttle_max; // throttle maximum percentage AP_Int8 _throttle_max; // throttle maximum percentage
AP_Float _thrust_curve_expo; // thrust curve exponent from -1 to +1 with 0 being linear AP_Float _thrust_curve_expo; // thrust curve exponent from -1 to +1 with 0 being linear
AP_Float _thrust_asymmetry; // asymmetry factor, how much better your skid-steering motors are at going forward than backwards (forward/backward thrust ratio)
AP_Float _vector_angle_max; // angle between steering's middle position and maximum position when using vectored thrust. zero to disable vectored thrust AP_Float _vector_angle_max; // angle between steering's middle position and maximum position when using vectored thrust. zero to disable vectored thrust
AP_Float _speed_scale_base; // speed above which steering is scaled down when using regular steering/throttle vehicles. zero to disable speed scaling AP_Float _speed_scale_base; // speed above which steering is scaled down when using regular steering/throttle vehicles. zero to disable speed scaling
AP_Float _steering_throttle_mix; // Steering vs Throttle priorisation. Higher numbers prioritise steering, lower numbers prioritise throttle. Only valid for Skid Steering vehicles AP_Float _steering_throttle_mix; // Steering vs Throttle priorisation. Higher numbers prioritise steering, lower numbers prioritise throttle. Only valid for Skid Steering vehicles