AP_NavEKF2: Improve optical flow height estimation

Updated derivation using sequential fusion of Y and X axis data.
This commit is contained in:
Paul Riseborough 2019-02-13 11:55:41 +11:00 committed by Andrew Tridgell
parent 2b8b53d6b2
commit a40208ebd4
5 changed files with 78 additions and 62 deletions

View File

@ -489,7 +489,7 @@ const AP_Param::GroupInfo NavEKF2::var_info[] = {
// @Param: TERR_GRAD // @Param: TERR_GRAD
// @DisplayName: Maximum terrain gradient // @DisplayName: Maximum terrain gradient
// @Description: Specifies the maximum gradient of the terrain below the vehicle when it is using range finder as a height reference // @Description: Specifies the maximum gradient of the terrain below the vehicle assumed when it is fusing range finder or optical flow to estimate terrain height.
// @Range: 0 0.2 // @Range: 0 0.2
// @Increment: 0.01 // @Increment: 0.01
// @User: Advanced // @User: Advanced

View File

@ -426,7 +426,6 @@ private:
const uint8_t flowIntervalMax_ms = 100; // maximum allowable time between flow fusion events const uint8_t flowIntervalMax_ms = 100; // maximum allowable time between flow fusion events
const uint16_t gndEffectTimeout_ms = 1000; // time in msec that ground effect mode is active after being activated const uint16_t gndEffectTimeout_ms = 1000; // time in msec that ground effect mode is active after being activated
const float gndEffectBaroScaler = 4.0f; // scaler applied to the barometer observation variance when ground effect mode is active const float gndEffectBaroScaler = 4.0f; // scaler applied to the barometer observation variance when ground effect mode is active
const uint8_t gndGradientSigma = 50; // RMS terrain gradient percentage assumed by the terrain height estimation
const uint8_t fusionTimeStep_ms = 10; // The minimum time interval between covariance predictions and measurement fusions in msec const uint8_t fusionTimeStep_ms = 10; // The minimum time interval between covariance predictions and measurement fusions in msec
struct { struct {

View File

@ -78,23 +78,20 @@ void NavEKF2_core::SelectFlowFusion()
/* /*
Estimation of terrain offset using a single state EKF Estimation of terrain offset using a single state EKF
The filter can fuse motion compensated optical flow rates and range finder measurements The filter can fuse motion compensated optical flow rates and range finder measurements
Equations generated using https://github.com/PX4/ecl/tree/master/EKF/matlab/scripts/Terrain%20Estimator
*/ */
void NavEKF2_core::EstimateTerrainOffset() void NavEKF2_core::EstimateTerrainOffset()
{ {
// start performance timer // start performance timer
hal.util->perf_begin(_perf_TerrainOffset); hal.util->perf_begin(_perf_TerrainOffset);
// constrain height above ground to be above range measured on ground
float heightAboveGndEst = MAX((terrainState - stateStruct.position.z), rngOnGnd);
// calculate a predicted LOS rate squared // calculate a predicted LOS rate squared
float velHorizSq = sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y); float velHorizSq = sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y);
float losRateSq = velHorizSq / sq(heightAboveGndEst);
// don't update terrain offset state if there is no range finder // don't fuse flow data if LOS rate is misaligned, without GPS, or insufficient velocity, as it is poorly observable
// don't update terrain state if not generating enough LOS rate, or without GPS, as it is poorly observable // don't fuse flow data if it exceeds validity limits
// don't update terrain state if we are using it as a height reference in the main filter // don't update terrain state if we are using it as a height reference in the main filter
bool cantFuseFlowData = (gpsNotAvailable || PV_AidingMode == AID_RELATIVE || velHorizSq < 25.0f || losRateSq < 0.01f); bool cantFuseFlowData = (gpsNotAvailable || PV_AidingMode == AID_RELATIVE || velHorizSq < 25.0f || (MAX(ofDataDelayed.flowRadXY[0],ofDataDelayed.flowRadXY[1]) > frontend->_maxFlowRate));
if ((!rangeDataToFuse && cantFuseFlowData) || (activeHgtSource == HGT_SOURCE_RNG)) { if ((!rangeDataToFuse && cantFuseFlowData) || (activeHgtSource == HGT_SOURCE_RNG)) {
// skip update // skip update
inhibitGndState = true; inhibitGndState = true;
@ -112,7 +109,7 @@ void NavEKF2_core::EstimateTerrainOffset()
// in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copters vertical velocity // in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copters vertical velocity
float timeLapsed = MIN(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f); float timeLapsed = MIN(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f);
float Pincrement = (distanceTravelledSq * sq(0.01f*float(frontend->gndGradientSigma))) + sq(timeLapsed)*P[5][5]; float Pincrement = (distanceTravelledSq * sq(frontend->_terrGradMax)) + sq(timeLapsed)*P[5][5];
Popt += Pincrement; Popt += Pincrement;
timeAtLastAuxEKF_ms = imuSampleTime_ms; timeAtLastAuxEKF_ms = imuSampleTime_ms;
@ -165,88 +162,109 @@ void NavEKF2_core::EstimateTerrainOffset()
if (fuseOptFlowData && !cantFuseFlowData) { if (fuseOptFlowData && !cantFuseFlowData) {
Vector3f relVelSensor; // velocity of sensor relative to ground in sensor axes Vector3f relVelSensor; // velocity of sensor relative to ground in sensor axes
float losPred; // predicted optical flow angular rate measurement Vector2f losPred; // predicted optical flow angular rate measurement
float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
float K_OPT; float K_OPT;
float H_OPT; float H_OPT;
Vector2f auxFlowObsInnovVar;
// predict range to centre of image // predict range to centre of image
float flowRngPred = MAX((terrainState - stateStruct.position[2]),rngOnGnd) / prevTnb.c.z; float flowRngPred = MAX((terrainState - stateStruct.position.z),rngOnGnd) / prevTnb.c.z;
// constrain terrain height to be below the vehicle // constrain terrain height to be below the vehicle
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd); terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
// calculate relative velocity in sensor frame // calculate relative velocity in sensor frame
relVelSensor = prevTnb*stateStruct.velocity; relVelSensor = prevTnb*stateStruct.velocity;
// divide velocity by range, subtract body rates and apply scale factor to // divide velocity by range, subtract body rates and apply scale factor to
// get predicted sensed angular optical rates relative to X and Y sensor axes // get predicted sensed angular optical rates relative to X and Y sensor axes
losPred = norm(relVelSensor.x, relVelSensor.y)/flowRngPred; losPred.x = relVelSensor.y / flowRngPred;
losPred.y = - relVelSensor.x / flowRngPred;
// calculate innovations // calculate innovations
auxFlowObsInnov = losPred - norm(ofDataDelayed.flowRadXYcomp.x, ofDataDelayed.flowRadXYcomp.y); auxFlowObsInnov = losPred - ofDataDelayed.flowRadXYcomp;
// calculate observation jacobian // calculate observation jacobians
float t3 = sq(q0); float t2 = q0*q0;
float t4 = sq(q1); float t3 = q1*q1;
float t5 = sq(q2); float t4 = q2*q2;
float t6 = sq(q3); float t5 = q3*q3;
float t10 = q0*q3*2.0f; float t6 = stateStruct.position.z - terrainState;
float t11 = q1*q2*2.0f; float t7 = 1.0f / (t6*t6);
float t14 = t3+t4-t5-t6; float t8 = q0*q3*2.0f;
float t15 = t14*stateStruct.velocity.x; float t9 = t2-t3-t4+t5;
float t16 = t10+t11;
float t17 = t16*stateStruct.velocity.y;
float t18 = q0*q2*2.0f;
float t19 = q1*q3*2.0f;
float t20 = t18-t19;
float t21 = t20*stateStruct.velocity.z;
float t2 = t15+t17-t21;
float t7 = t3-t4-t5+t6;
float t8 = stateStruct.position[2]-terrainState;
float t9 = 1.0f/sq(t8);
float t24 = t3-t4+t5-t6;
float t25 = t24*stateStruct.velocity.y;
float t26 = t10-t11;
float t27 = t26*stateStruct.velocity.x;
float t28 = q0*q1*2.0f;
float t29 = q2*q3*2.0f;
float t30 = t28+t29;
float t31 = t30*stateStruct.velocity.z;
float t12 = t25-t27+t31;
float t13 = sq(t7);
float t22 = sq(t2);
float t23 = 1.0f/(t8*t8*t8);
float t32 = sq(t12);
H_OPT = 0.5f*(t13*t22*t23*2.0f+t13*t23*t32*2.0f)/sqrtf(t9*t13*t22+t9*t13*t32);
// calculate innovation variances // prevent the state variances from becoming badly conditioned
auxFlowObsInnovVar = H_OPT*Popt*H_OPT + R_LOS; Popt = MAX(Popt,1E-6f);
// calculate observation noise variance from parameter
float flow_noise_variance = sq(MAX(frontend->_flowNoise, 0.05f));
// Fuse Y axis data
// Calculate observation partial derivative
H_OPT = t7*t9*(-stateStruct.velocity.z*(q0*q2*2.0-q1*q3*2.0)+stateStruct.velocity.x*(t2+t3-t4-t5)+stateStruct.velocity.y*(t8+q1*q2*2.0));
// calculate innovation variance
auxFlowObsInnovVar.y = H_OPT * Popt * H_OPT + flow_noise_variance;
// calculate Kalman gain // calculate Kalman gain
K_OPT = Popt*H_OPT/auxFlowObsInnovVar; K_OPT = Popt * H_OPT / auxFlowObsInnovVar.y;
// calculate the innovation consistency test ratio // calculate the innovation consistency test ratio
auxFlowTestRatio = sq(auxFlowObsInnov) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar); auxFlowTestRatio.y = sq(auxFlowObsInnov.y) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.y);
// don't fuse if optical flow data is outside valid range // don't fuse if optical flow data is outside valid range
if (MAX(ofDataDelayed.flowRadXY[0],ofDataDelayed.flowRadXY[1]) < frontend->_maxFlowRate) { if (auxFlowTestRatio.y < 1.0f) {
// correct the state // correct the state
terrainState -= K_OPT * auxFlowObsInnov; terrainState -= K_OPT * auxFlowObsInnov.y;
// constrain the state // constrain the state
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd); terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
// update intermediate variables used when fusing the X axis
t6 = stateStruct.position.z - terrainState;
t7 = 1.0f / (t6*t6);
// correct the covariance // correct the covariance
Popt = Popt - K_OPT * H_OPT * Popt; Popt = Popt - K_OPT * H_OPT * Popt;
// prevent the state variances from becoming negative // prevent the state variances from becoming badly conditioned
Popt = MAX(Popt,0.0f); Popt = MAX(Popt,1E-6f);
}
// fuse X axis data
H_OPT = -t7*t9*(stateStruct.velocity.z*(q0*q1*2.0+q2*q3*2.0)+stateStruct.velocity.y*(t2-t3+t4-t5)-stateStruct.velocity.x*(t8-q1*q2*2.0));
// calculate innovation variances
auxFlowObsInnovVar.x = H_OPT * Popt * H_OPT + flow_noise_variance;
// calculate Kalman gain
K_OPT = Popt * H_OPT / auxFlowObsInnovVar.x;
// calculate the innovation consistency test ratio
auxFlowTestRatio.x = sq(auxFlowObsInnov.x) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.x);
// don't fuse if optical flow data is outside valid range
if (auxFlowTestRatio.x < 1.0f) {
// correct the state
terrainState -= K_OPT * auxFlowObsInnov.x;
// constrain the state
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
// correct the covariance
Popt = Popt - K_OPT * H_OPT * Popt;
// prevent the state variances from becoming badly conditioned
Popt = MAX(Popt,1E-6f);
} }
} }
} }

View File

@ -61,7 +61,7 @@ void NavEKF2_core::getFlowDebug(float &varFlow, float &gndOffset, float &flowInn
gndOffset = terrainState; gndOffset = terrainState;
flowInnovX = innovOptFlow[0]; flowInnovX = innovOptFlow[0];
flowInnovY = innovOptFlow[1]; flowInnovY = innovOptFlow[1];
auxInnov = auxFlowObsInnov; auxInnov = norm(auxFlowObsInnov.x,auxFlowObsInnov.y);
HAGL = terrainState - stateStruct.position.z; HAGL = terrainState - stateStruct.position.z;
rngInnov = innovRng; rngInnov = innovRng;
range = rangeDataDelayed.rng; range = rangeDataDelayed.rng;

View File

@ -966,8 +966,7 @@ private:
bool flowDataToFuse; // true when optical flow data is ready for fusion bool flowDataToFuse; // true when optical flow data is ready for fusion
bool flowDataValid; // true while optical flow data is still fresh bool flowDataValid; // true while optical flow data is still fresh
bool fuseOptFlowData; // this boolean causes the last optical flow measurement to be fused bool fuseOptFlowData; // this boolean causes the last optical flow measurement to be fused
float auxFlowObsInnov; // optical flow rate innovation from 1-state terrain offset estimator Vector2f auxFlowObsInnov; // optical flow rate innovation from 1-state terrain offset estimator
float auxFlowObsInnovVar; // innovation variance for optical flow observations from 1-state terrain offset estimator
uint32_t flowValidMeaTime_ms; // time stamp from latest valid flow measurement (msec) uint32_t flowValidMeaTime_ms; // time stamp from latest valid flow measurement (msec)
uint32_t rngValidMeaTime_ms; // time stamp from latest valid range measurement (msec) uint32_t rngValidMeaTime_ms; // time stamp from latest valid range measurement (msec)
uint32_t flowMeaTime_ms; // time stamp from latest flow measurement (msec) uint32_t flowMeaTime_ms; // time stamp from latest flow measurement (msec)
@ -985,7 +984,7 @@ private:
bool inhibitGndState; // true when the terrain position state is to remain constant bool inhibitGndState; // true when the terrain position state is to remain constant
uint32_t prevFlowFuseTime_ms; // time both flow measurement components passed their innovation consistency checks uint32_t prevFlowFuseTime_ms; // time both flow measurement components passed their innovation consistency checks
Vector2 flowTestRatio; // square of optical flow innovations divided by fail threshold used by main filter where >1.0 is a fail Vector2 flowTestRatio; // square of optical flow innovations divided by fail threshold used by main filter where >1.0 is a fail
float auxFlowTestRatio; // sum of squares of optical flow innovation divided by fail threshold used by 1-state terrain offset estimator Vector2f auxFlowTestRatio; // sum of squares of optical flow innovation divided by fail threshold used by 1-state terrain offset estimator
float R_LOS; // variance of optical flow rate measurements (rad/sec)^2 float R_LOS; // variance of optical flow rate measurements (rad/sec)^2
float auxRngTestRatio; // square of range finder innovations divided by fail threshold used by main filter where >1.0 is a fail float auxRngTestRatio; // square of range finder innovations divided by fail threshold used by main filter where >1.0 is a fail
Vector2f flowGyroBias; // bias error of optical flow sensor gyro output Vector2f flowGyroBias; // bias error of optical flow sensor gyro output