mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 18:08:30 -04:00
uncrustify ArduCopter/navigation.pde
This commit is contained in:
parent
1d56079ba2
commit
a3f6cdc0bd
@ -5,231 +5,231 @@
|
||||
//****************************************************************
|
||||
static void navigate()
|
||||
{
|
||||
// waypoint distance from plane in cm
|
||||
// ---------------------------------------
|
||||
wp_distance = get_distance_cm(&filtered_loc, &next_WP);
|
||||
home_distance = get_distance_cm(&filtered_loc, &home);
|
||||
// waypoint distance from plane in cm
|
||||
// ---------------------------------------
|
||||
wp_distance = get_distance_cm(&filtered_loc, &next_WP);
|
||||
home_distance = get_distance_cm(&filtered_loc, &home);
|
||||
|
||||
// target_bearing is where we should be heading
|
||||
// --------------------------------------------
|
||||
target_bearing = get_bearing_cd(&filtered_loc, &next_WP);
|
||||
home_to_copter_bearing = get_bearing_cd(&home, ¤t_loc);
|
||||
// target_bearing is where we should be heading
|
||||
// --------------------------------------------
|
||||
target_bearing = get_bearing_cd(&filtered_loc, &next_WP);
|
||||
home_to_copter_bearing = get_bearing_cd(&home, ¤t_loc);
|
||||
}
|
||||
|
||||
static bool check_missed_wp()
|
||||
{
|
||||
int32_t temp;
|
||||
temp = target_bearing - original_target_bearing;
|
||||
temp = wrap_180(temp);
|
||||
return (labs(temp) > 9000); // we passed the waypoint by 100 degrees
|
||||
int32_t temp;
|
||||
temp = target_bearing - original_target_bearing;
|
||||
temp = wrap_180(temp);
|
||||
return (labs(temp) > 9000); // we passed the waypoint by 100 degrees
|
||||
}
|
||||
|
||||
// ------------------------------
|
||||
static void calc_XY_velocity(){
|
||||
static int32_t last_longitude = 0;
|
||||
static int32_t last_latitude = 0;
|
||||
static int32_t last_longitude = 0;
|
||||
static int32_t last_latitude = 0;
|
||||
|
||||
// called after GPS read
|
||||
// offset calculation of GPS speed:
|
||||
// used for estimations below 1.5m/s
|
||||
// y_GPS_speed positve = Up
|
||||
// x_GPS_speed positve = Right
|
||||
// called after GPS read
|
||||
// offset calculation of GPS speed:
|
||||
// used for estimations below 1.5m/s
|
||||
// y_GPS_speed positve = Up
|
||||
// x_GPS_speed positve = Right
|
||||
|
||||
// initialise last_longitude and last_latitude
|
||||
if( last_longitude == 0 && last_latitude == 0 ) {
|
||||
last_longitude = g_gps->longitude;
|
||||
last_latitude = g_gps->latitude;
|
||||
}
|
||||
// initialise last_longitude and last_latitude
|
||||
if( last_longitude == 0 && last_latitude == 0 ) {
|
||||
last_longitude = g_gps->longitude;
|
||||
last_latitude = g_gps->latitude;
|
||||
}
|
||||
|
||||
// this speed is ~ in cm because we are using 10^7 numbers from GPS
|
||||
float tmp = 1.0/dTnav;
|
||||
// this speed is ~ in cm because we are using 10^7 numbers from GPS
|
||||
float tmp = 1.0/dTnav;
|
||||
|
||||
x_actual_speed = (float)(g_gps->longitude - last_longitude) * scaleLongDown * tmp;
|
||||
y_actual_speed = (float)(g_gps->latitude - last_latitude) * tmp;
|
||||
x_actual_speed = (float)(g_gps->longitude - last_longitude) * scaleLongDown * tmp;
|
||||
y_actual_speed = (float)(g_gps->latitude - last_latitude) * tmp;
|
||||
|
||||
last_longitude = g_gps->longitude;
|
||||
last_latitude = g_gps->latitude;
|
||||
last_longitude = g_gps->longitude;
|
||||
last_latitude = g_gps->latitude;
|
||||
|
||||
/*if(g_gps->ground_speed > 150){
|
||||
float temp = radians((float)g_gps->ground_course/100.0);
|
||||
x_actual_speed = (float)g_gps->ground_speed * sin(temp);
|
||||
y_actual_speed = (float)g_gps->ground_speed * cos(temp);
|
||||
}*/
|
||||
/*if(g_gps->ground_speed > 150){
|
||||
* float temp = radians((float)g_gps->ground_course/100.0);
|
||||
* x_actual_speed = (float)g_gps->ground_speed * sin(temp);
|
||||
* y_actual_speed = (float)g_gps->ground_speed * cos(temp);
|
||||
* }*/
|
||||
|
||||
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
// inertial_nav
|
||||
xy_error_correction();
|
||||
filtered_loc.lng = xLeadFilter.get_position(g_gps->longitude, accels_velocity.x);
|
||||
filtered_loc.lat = yLeadFilter.get_position(g_gps->latitude, accels_velocity.y);
|
||||
#else
|
||||
filtered_loc.lng = xLeadFilter.get_position(g_gps->longitude, x_actual_speed);
|
||||
filtered_loc.lat = yLeadFilter.get_position(g_gps->latitude, y_actual_speed);
|
||||
#endif
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
// inertial_nav
|
||||
xy_error_correction();
|
||||
filtered_loc.lng = xLeadFilter.get_position(g_gps->longitude, accels_velocity.x);
|
||||
filtered_loc.lat = yLeadFilter.get_position(g_gps->latitude, accels_velocity.y);
|
||||
#else
|
||||
filtered_loc.lng = xLeadFilter.get_position(g_gps->longitude, x_actual_speed);
|
||||
filtered_loc.lat = yLeadFilter.get_position(g_gps->latitude, y_actual_speed);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void calc_location_error(struct Location *next_loc)
|
||||
{
|
||||
/*
|
||||
Becuase we are using lat and lon to do our distance errors here's a quick chart:
|
||||
100 = 1m
|
||||
1000 = 11m = 36 feet
|
||||
1800 = 19.80m = 60 feet
|
||||
3000 = 33m
|
||||
10000 = 111m
|
||||
*/
|
||||
/*
|
||||
* Becuase we are using lat and lon to do our distance errors here's a quick chart:
|
||||
* 100 = 1m
|
||||
* 1000 = 11m = 36 feet
|
||||
* 1800 = 19.80m = 60 feet
|
||||
* 3000 = 33m
|
||||
* 10000 = 111m
|
||||
*/
|
||||
|
||||
// X Error
|
||||
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East
|
||||
// X Error
|
||||
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East
|
||||
|
||||
// Y Error
|
||||
lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North
|
||||
// Y Error
|
||||
lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North
|
||||
}
|
||||
|
||||
#define NAV_ERR_MAX 600
|
||||
#define NAV_RATE_ERR_MAX 250
|
||||
static void calc_loiter(int16_t x_error, int16_t y_error)
|
||||
{
|
||||
int32_t p,i,d; // used to capture pid values for logging
|
||||
int32_t output;
|
||||
int32_t x_target_speed, y_target_speed;
|
||||
int32_t p,i,d; // used to capture pid values for logging
|
||||
int32_t output;
|
||||
int32_t x_target_speed, y_target_speed;
|
||||
|
||||
// East / West
|
||||
x_target_speed = g.pi_loiter_lon.get_p(x_error); // calculate desired speed from lon error
|
||||
// East / West
|
||||
x_target_speed = g.pi_loiter_lon.get_p(x_error); // calculate desired speed from lon error
|
||||
|
||||
#if LOGGING_ENABLED == ENABLED
|
||||
// log output if PID logging is on and we are tuning the yaw
|
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) {
|
||||
Log_Write_PID(CH6_LOITER_KP, x_error, x_target_speed, 0, 0, x_target_speed, tuning_value);
|
||||
}
|
||||
// log output if PID logging is on and we are tuning the yaw
|
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) {
|
||||
Log_Write_PID(CH6_LOITER_KP, x_error, x_target_speed, 0, 0, x_target_speed, tuning_value);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
// calculate rate error
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
x_rate_error = x_target_speed - accels_velocity.x; // calc the speed error
|
||||
#else
|
||||
x_rate_error = x_target_speed - x_actual_speed; // calc the speed error
|
||||
#endif
|
||||
|
||||
|
||||
p = g.pid_loiter_rate_lon.get_p(x_rate_error);
|
||||
i = g.pid_loiter_rate_lon.get_i(x_rate_error + x_error, dTnav);
|
||||
d = g.pid_loiter_rate_lon.get_d(x_error, dTnav);
|
||||
d = constrain(d, -2000, 2000);
|
||||
|
||||
// get rid of noise
|
||||
if(abs(x_actual_speed) < 50){
|
||||
d = 0;
|
||||
}
|
||||
|
||||
output = p + i + d;
|
||||
nav_lon = constrain(output, -3200, 3200);
|
||||
|
||||
#if LOGGING_ENABLED == ENABLED
|
||||
// log output if PID logging is on and we are tuning the yaw
|
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) {
|
||||
Log_Write_PID(CH6_LOITER_RATE_KP, x_rate_error, p, i, d, nav_lon, tuning_value);
|
||||
}
|
||||
// calculate rate error
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
x_rate_error = x_target_speed - accels_velocity.x; // calc the speed error
|
||||
#else
|
||||
x_rate_error = x_target_speed - x_actual_speed; // calc the speed error
|
||||
#endif
|
||||
|
||||
// North / South
|
||||
y_target_speed = g.pi_loiter_lat.get_p(y_error); // calculate desired speed from lat error
|
||||
|
||||
p = g.pid_loiter_rate_lon.get_p(x_rate_error);
|
||||
i = g.pid_loiter_rate_lon.get_i(x_rate_error + x_error, dTnav);
|
||||
d = g.pid_loiter_rate_lon.get_d(x_error, dTnav);
|
||||
d = constrain(d, -2000, 2000);
|
||||
|
||||
// get rid of noise
|
||||
if(abs(x_actual_speed) < 50) {
|
||||
d = 0;
|
||||
}
|
||||
|
||||
output = p + i + d;
|
||||
nav_lon = constrain(output, -3200, 3200);
|
||||
|
||||
#if LOGGING_ENABLED == ENABLED
|
||||
// log output if PID logging is on and we are tuning the yaw
|
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) {
|
||||
Log_Write_PID(CH6_LOITER_KP+100, y_error, y_target_speed, 0, 0, y_target_speed, tuning_value);
|
||||
}
|
||||
// log output if PID logging is on and we are tuning the yaw
|
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) {
|
||||
Log_Write_PID(CH6_LOITER_RATE_KP, x_rate_error, p, i, d, nav_lon, tuning_value);
|
||||
}
|
||||
#endif
|
||||
|
||||
// calculate rate error
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
y_rate_error = y_target_speed - accels_velocity.y; // calc the speed error
|
||||
#else
|
||||
y_rate_error = y_target_speed - y_actual_speed; // calc the speed error
|
||||
#endif
|
||||
|
||||
p = g.pid_loiter_rate_lat.get_p(y_rate_error);
|
||||
i = g.pid_loiter_rate_lat.get_i(y_rate_error + y_error, dTnav);
|
||||
d = g.pid_loiter_rate_lat.get_d(y_error, dTnav);
|
||||
d = constrain(d, -2000, 2000);
|
||||
|
||||
// get rid of noise
|
||||
if(abs(y_actual_speed) < 50){
|
||||
d = 0;
|
||||
}
|
||||
|
||||
output = p + i + d;
|
||||
nav_lat = constrain(output, -3200, 3200);
|
||||
// North / South
|
||||
y_target_speed = g.pi_loiter_lat.get_p(y_error); // calculate desired speed from lat error
|
||||
|
||||
#if LOGGING_ENABLED == ENABLED
|
||||
// log output if PID logging is on and we are tuning the yaw
|
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) {
|
||||
Log_Write_PID(CH6_LOITER_RATE_KP+100, y_rate_error, p, i, d, nav_lat, tuning_value);
|
||||
}
|
||||
// log output if PID logging is on and we are tuning the yaw
|
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) {
|
||||
Log_Write_PID(CH6_LOITER_KP+100, y_error, y_target_speed, 0, 0, y_target_speed, tuning_value);
|
||||
}
|
||||
#endif
|
||||
|
||||
// copy over I term to Nav_Rate
|
||||
g.pid_nav_lon.set_integrator(g.pid_loiter_rate_lon.get_integrator());
|
||||
g.pid_nav_lat.set_integrator(g.pid_loiter_rate_lat.get_integrator());
|
||||
// calculate rate error
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
y_rate_error = y_target_speed - accels_velocity.y; // calc the speed error
|
||||
#else
|
||||
y_rate_error = y_target_speed - y_actual_speed; // calc the speed error
|
||||
#endif
|
||||
|
||||
p = g.pid_loiter_rate_lat.get_p(y_rate_error);
|
||||
i = g.pid_loiter_rate_lat.get_i(y_rate_error + y_error, dTnav);
|
||||
d = g.pid_loiter_rate_lat.get_d(y_error, dTnav);
|
||||
d = constrain(d, -2000, 2000);
|
||||
|
||||
// get rid of noise
|
||||
if(abs(y_actual_speed) < 50) {
|
||||
d = 0;
|
||||
}
|
||||
|
||||
output = p + i + d;
|
||||
nav_lat = constrain(output, -3200, 3200);
|
||||
|
||||
#if LOGGING_ENABLED == ENABLED
|
||||
// log output if PID logging is on and we are tuning the yaw
|
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) {
|
||||
Log_Write_PID(CH6_LOITER_RATE_KP+100, y_rate_error, p, i, d, nav_lat, tuning_value);
|
||||
}
|
||||
#endif
|
||||
|
||||
// copy over I term to Nav_Rate
|
||||
g.pid_nav_lon.set_integrator(g.pid_loiter_rate_lon.get_integrator());
|
||||
g.pid_nav_lat.set_integrator(g.pid_loiter_rate_lat.get_integrator());
|
||||
}
|
||||
|
||||
static void calc_nav_rate(int16_t max_speed)
|
||||
{
|
||||
float temp, temp_x, temp_y;
|
||||
float temp, temp_x, temp_y;
|
||||
|
||||
// push us towards the original track
|
||||
update_crosstrack();
|
||||
// push us towards the original track
|
||||
update_crosstrack();
|
||||
|
||||
int16_t cross_speed = crosstrack_error * -g.crosstrack_gain; // scale down crosstrack_error in cm
|
||||
cross_speed = constrain(cross_speed, -150, 150);
|
||||
int16_t cross_speed = crosstrack_error * -g.crosstrack_gain; // scale down crosstrack_error in cm
|
||||
cross_speed = constrain(cross_speed, -150, 150);
|
||||
|
||||
// rotate by 90 to deal with trig functions
|
||||
temp = (9000l - target_bearing) * RADX100;
|
||||
temp_x = cos(temp);
|
||||
temp_y = sin(temp);
|
||||
// rotate by 90 to deal with trig functions
|
||||
temp = (9000l - target_bearing) * RADX100;
|
||||
temp_x = cos(temp);
|
||||
temp_y = sin(temp);
|
||||
|
||||
// rotate desired spped vector:
|
||||
int32_t x_target_speed = max_speed * temp_x - cross_speed * temp_y;
|
||||
int32_t y_target_speed = cross_speed * temp_x + max_speed * temp_y;
|
||||
// rotate desired spped vector:
|
||||
int32_t x_target_speed = max_speed * temp_x - cross_speed * temp_y;
|
||||
int32_t y_target_speed = cross_speed * temp_x + max_speed * temp_y;
|
||||
|
||||
// East / West
|
||||
// calculate rate error
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
x_rate_error = x_target_speed - accels_velocity.x;
|
||||
#else
|
||||
x_rate_error = x_target_speed - x_actual_speed;
|
||||
#endif
|
||||
// East / West
|
||||
// calculate rate error
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
x_rate_error = x_target_speed - accels_velocity.x;
|
||||
#else
|
||||
x_rate_error = x_target_speed - x_actual_speed;
|
||||
#endif
|
||||
|
||||
x_rate_error = constrain(x_rate_error, -500, 500);
|
||||
nav_lon = g.pid_nav_lon.get_pid(x_rate_error, dTnav);
|
||||
int32_t tilt = (x_target_speed * x_target_speed * (int32_t)g.tilt_comp) / 10000;
|
||||
x_rate_error = constrain(x_rate_error, -500, 500);
|
||||
nav_lon = g.pid_nav_lon.get_pid(x_rate_error, dTnav);
|
||||
int32_t tilt = (x_target_speed * x_target_speed * (int32_t)g.tilt_comp) / 10000;
|
||||
|
||||
if(x_target_speed < 0) tilt = -tilt;
|
||||
nav_lon += tilt;
|
||||
nav_lon = constrain(nav_lon, -3200, 3200);
|
||||
if(x_target_speed < 0) tilt = -tilt;
|
||||
nav_lon += tilt;
|
||||
nav_lon = constrain(nav_lon, -3200, 3200);
|
||||
|
||||
|
||||
// North / South
|
||||
// calculate rate error
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
y_rate_error = y_target_speed - accels_velocity.y;
|
||||
#else
|
||||
y_rate_error = y_target_speed - y_actual_speed;
|
||||
#endif
|
||||
// North / South
|
||||
// calculate rate error
|
||||
#if INERTIAL_NAV == ENABLED
|
||||
y_rate_error = y_target_speed - accels_velocity.y;
|
||||
#else
|
||||
y_rate_error = y_target_speed - y_actual_speed;
|
||||
#endif
|
||||
|
||||
y_rate_error = constrain(y_rate_error, -500, 500); // added a rate error limit to keep pitching down to a minimum
|
||||
nav_lat = g.pid_nav_lat.get_pid(y_rate_error, dTnav);
|
||||
tilt = (y_target_speed * y_target_speed * (int32_t)g.tilt_comp) / 10000;
|
||||
y_rate_error = constrain(y_rate_error, -500, 500); // added a rate error limit to keep pitching down to a minimum
|
||||
nav_lat = g.pid_nav_lat.get_pid(y_rate_error, dTnav);
|
||||
tilt = (y_target_speed * y_target_speed * (int32_t)g.tilt_comp) / 10000;
|
||||
|
||||
if(y_target_speed < 0) tilt = -tilt;
|
||||
nav_lat += tilt;
|
||||
nav_lat = constrain(nav_lat, -3200, 3200);
|
||||
if(y_target_speed < 0) tilt = -tilt;
|
||||
nav_lat += tilt;
|
||||
nav_lat = constrain(nav_lat, -3200, 3200);
|
||||
|
||||
// copy over I term to Loiter_Rate
|
||||
g.pid_loiter_rate_lon.set_integrator(g.pid_nav_lon.get_integrator());
|
||||
g.pid_loiter_rate_lat.set_integrator(g.pid_nav_lat.get_integrator());
|
||||
// copy over I term to Loiter_Rate
|
||||
g.pid_loiter_rate_lon.set_integrator(g.pid_nav_lon.get_integrator());
|
||||
g.pid_loiter_rate_lat.set_integrator(g.pid_nav_lat.get_integrator());
|
||||
}
|
||||
|
||||
|
||||
@ -237,130 +237,130 @@ static void calc_nav_rate(int16_t max_speed)
|
||||
// We use the DCM's matrix to precalculate these trig values at 50hz
|
||||
static void calc_loiter_pitch_roll()
|
||||
{
|
||||
//Serial.printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y);
|
||||
// rotate the vector
|
||||
auto_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
|
||||
auto_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y;
|
||||
//Serial.printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y);
|
||||
// rotate the vector
|
||||
auto_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
|
||||
auto_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y;
|
||||
|
||||
// flip pitch because forward is negative
|
||||
auto_pitch = -auto_pitch;
|
||||
// flip pitch because forward is negative
|
||||
auto_pitch = -auto_pitch;
|
||||
}
|
||||
|
||||
static int16_t get_desired_speed(int16_t max_speed, bool _slow)
|
||||
{
|
||||
/*
|
||||
|< WP Radius
|
||||
0 1 2 3 4 5 6 7 8m
|
||||
...|...|...|...|...|...|...|...|
|
||||
100 | 200 300 400cm/s
|
||||
| +|+
|
||||
|< we should slow to 1.5 m/s as we hit the target
|
||||
*/
|
||||
/*
|
||||
* |< WP Radius
|
||||
* 0 1 2 3 4 5 6 7 8m
|
||||
* ...|...|...|...|...|...|...|...|
|
||||
* 100 | 200 300 400cm/s
|
||||
| +|+
|
||||
||< we should slow to 1.5 m/s as we hit the target
|
||||
*/
|
||||
|
||||
if(fast_corner){
|
||||
waypoint_radius = g.waypoint_radius * 2;
|
||||
//max_speed = max_speed;
|
||||
}else{
|
||||
waypoint_radius = g.waypoint_radius;
|
||||
max_speed = min(max_speed, (wp_distance - g.waypoint_radius) / 3);
|
||||
max_speed = max(max_speed, WAYPOINT_SPEED_MIN); // go at least 100cm/s
|
||||
}
|
||||
if(fast_corner) {
|
||||
waypoint_radius = g.waypoint_radius * 2;
|
||||
//max_speed = max_speed;
|
||||
}else{
|
||||
waypoint_radius = g.waypoint_radius;
|
||||
max_speed = min(max_speed, (wp_distance - g.waypoint_radius) / 3);
|
||||
max_speed = max(max_speed, WAYPOINT_SPEED_MIN); // go at least 100cm/s
|
||||
}
|
||||
|
||||
// limit the ramp up of the speed
|
||||
// waypoint_speed_gov is reset to 0 at each new WP command
|
||||
if(max_speed > waypoint_speed_gov){
|
||||
waypoint_speed_gov += (int)(100.0 * dTnav); // increase at .5/ms
|
||||
max_speed = waypoint_speed_gov;
|
||||
}
|
||||
// limit the ramp up of the speed
|
||||
// waypoint_speed_gov is reset to 0 at each new WP command
|
||||
if(max_speed > waypoint_speed_gov) {
|
||||
waypoint_speed_gov += (int)(100.0 * dTnav); // increase at .5/ms
|
||||
max_speed = waypoint_speed_gov;
|
||||
}
|
||||
|
||||
return max_speed;
|
||||
return max_speed;
|
||||
}
|
||||
|
||||
static int16_t get_desired_climb_rate()
|
||||
{
|
||||
if(alt_change_flag == ASCENDING){
|
||||
return constrain(altitude_error / 4, 100, 180); // 180cm /s up, minimum is 100cm/s
|
||||
if(alt_change_flag == ASCENDING) {
|
||||
return constrain(altitude_error / 4, 100, 180); // 180cm /s up, minimum is 100cm/s
|
||||
|
||||
}else if(alt_change_flag == DESCENDING){
|
||||
return constrain(altitude_error / 6, -100, -10); // -100cm /s down, max is -10cms
|
||||
}else if(alt_change_flag == DESCENDING) {
|
||||
return constrain(altitude_error / 6, -100, -10); // -100cm /s down, max is -10cms
|
||||
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void update_crosstrack(void)
|
||||
{
|
||||
// Crosstrack Error
|
||||
// ----------------
|
||||
// If we are too far off or too close we don't do track following
|
||||
float temp = (target_bearing - original_target_bearing) * RADX100;
|
||||
crosstrack_error = sin(temp) * wp_distance; // Meters we are off track line
|
||||
// Crosstrack Error
|
||||
// ----------------
|
||||
// If we are too far off or too close we don't do track following
|
||||
float temp = (target_bearing - original_target_bearing) * RADX100;
|
||||
crosstrack_error = sin(temp) * wp_distance; // Meters we are off track line
|
||||
}
|
||||
|
||||
static int32_t get_altitude_error()
|
||||
{
|
||||
// Next_WP alt is our target alt
|
||||
// It changes based on climb rate
|
||||
// until it reaches the target_altitude
|
||||
return next_WP.alt - current_loc.alt;
|
||||
// Next_WP alt is our target alt
|
||||
// It changes based on climb rate
|
||||
// until it reaches the target_altitude
|
||||
return next_WP.alt - current_loc.alt;
|
||||
}
|
||||
|
||||
static void clear_new_altitude()
|
||||
{
|
||||
alt_change_flag = REACHED_ALT;
|
||||
alt_change_flag = REACHED_ALT;
|
||||
}
|
||||
|
||||
static void force_new_altitude(int32_t new_alt)
|
||||
{
|
||||
next_WP.alt = new_alt;
|
||||
alt_change_flag = REACHED_ALT;
|
||||
next_WP.alt = new_alt;
|
||||
alt_change_flag = REACHED_ALT;
|
||||
}
|
||||
|
||||
static void set_new_altitude(int32_t new_alt)
|
||||
{
|
||||
next_WP.alt = new_alt;
|
||||
next_WP.alt = new_alt;
|
||||
|
||||
if(next_WP.alt > current_loc.alt + 20){
|
||||
// we are below, going up
|
||||
alt_change_flag = ASCENDING;
|
||||
if(next_WP.alt > current_loc.alt + 20) {
|
||||
// we are below, going up
|
||||
alt_change_flag = ASCENDING;
|
||||
|
||||
}else if(next_WP.alt < current_loc.alt - 20){
|
||||
// we are above, going down
|
||||
alt_change_flag = DESCENDING;
|
||||
}else if(next_WP.alt < current_loc.alt - 20) {
|
||||
// we are above, going down
|
||||
alt_change_flag = DESCENDING;
|
||||
|
||||
}else{
|
||||
// No Change
|
||||
alt_change_flag = REACHED_ALT;
|
||||
}
|
||||
}else{
|
||||
// No Change
|
||||
alt_change_flag = REACHED_ALT;
|
||||
}
|
||||
}
|
||||
|
||||
static void verify_altitude()
|
||||
{
|
||||
if(alt_change_flag == ASCENDING){
|
||||
// we are below, going up
|
||||
if(current_loc.alt > next_WP.alt - 50){
|
||||
alt_change_flag = REACHED_ALT;
|
||||
}
|
||||
}else if (alt_change_flag == DESCENDING){
|
||||
// we are above, going down
|
||||
if(current_loc.alt <= next_WP.alt + 50)
|
||||
alt_change_flag = REACHED_ALT;
|
||||
}
|
||||
if(alt_change_flag == ASCENDING) {
|
||||
// we are below, going up
|
||||
if(current_loc.alt > next_WP.alt - 50) {
|
||||
alt_change_flag = REACHED_ALT;
|
||||
}
|
||||
}else if (alt_change_flag == DESCENDING) {
|
||||
// we are above, going down
|
||||
if(current_loc.alt <= next_WP.alt + 50)
|
||||
alt_change_flag = REACHED_ALT;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static int32_t wrap_360(int32_t error)
|
||||
{
|
||||
if (error > 36000) error -= 36000;
|
||||
if (error < 0) error += 36000;
|
||||
return error;
|
||||
if (error > 36000) error -= 36000;
|
||||
if (error < 0) error += 36000;
|
||||
return error;
|
||||
}
|
||||
|
||||
static int32_t wrap_180(int32_t error)
|
||||
{
|
||||
if (error > 18000) error -= 36000;
|
||||
if (error < -18000) error += 36000;
|
||||
return error;
|
||||
if (error > 18000) error -= 36000;
|
||||
if (error < -18000) error += 36000;
|
||||
return error;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user