Add "3 axis camera stabilization" and "point camera to 3D point" functionality

Patch by Gregory Fletcher and reviewed by me
This commit is contained in:
Amilcar Lucas 2012-06-13 20:55:19 +02:00
parent 881a66ae01
commit a32b7c200b
6 changed files with 502 additions and 371 deletions

View File

@ -258,11 +258,6 @@ AP_AnalogSource_Arduino pitot_analog_source(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0)
AP_Relay relay;
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
AP_Mount camera_mount(g_gps, &ahrs);
#endif
////////////////////////////////////////////////////////////////////////////////
@ -637,6 +632,14 @@ static unsigned long dTnav;
static float load;
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
AP_Mount camera_mount(&current_loc, g_gps, &ahrs);
#endif
////////////////////////////////////////////////////////////////////////////////
// Top-level logic

View File

@ -277,13 +277,23 @@ static const AP_Param::Info var_info[] PROGMEM = {
// @User: Advanced
GSCALAR(airspeed_use, "ARSPD_USE"),
// RC channel
//-----------
GGROUP(channel_roll, "RC1_", RC_Channel),
GGROUP(channel_pitch, "RC2_", RC_Channel),
GGROUP(channel_throttle, "RC3_", RC_Channel),
GGROUP(channel_rudder, "RC4_", RC_Channel),
// @Group: RC5_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp
GGROUP(rc_5, "RC5_", RC_Channel_aux),
// @Group: RC6_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp
GGROUP(rc_6, "RC6_", RC_Channel_aux),
// @Group: RC7_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp
GGROUP(rc_7, "RC7_", RC_Channel_aux),
// @Group: RC8_
// @Path: ../libraries/RC_Channel/RC_Channel_aux.cpp
GGROUP(rc_8, "RC8_", RC_Channel_aux),
GGROUP(pidNavRoll, "HDNG2RLL_", PID),

View File

@ -4,13 +4,15 @@
extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function
AP_Mount::AP_Mount(GPS *gps, AP_AHRS *ahrs)
AP_Mount::AP_Mount(const struct Location *current_loc, GPS *&gps, AP_AHRS *ahrs):
_gps(gps)
{
_ahrs=ahrs;
_gps=gps;
_ahrs = ahrs;
_current_loc = current_loc;
//set_mode(MAV_MOUNT_MODE_RETRACT);
//set_mode(MAV_MOUNT_MODE_RC_TARGETING); // FIXME: This is just to test without mavlink
set_mode(MAV_MOUNT_MODE_GPS_POINT); // FIXME: this is to test ONLY targeting
set_mode(MAV_MOUNT_MODE_RC_TARGETING); // FIXME: This is just to test without mavlink
//set_mode(MAV_MOUNT_MODE_GPS_POINT); // FIXME: this is to test ONLY targeting
_retract_angles.x=0;
_retract_angles.y=0;
@ -56,18 +58,21 @@ void AP_Mount::update_mount_position()
switch(_mount_mode)
{
// move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage
case MAV_MOUNT_MODE_RETRACT:
roll_angle =100*_retract_angles.x;
pitch_angle=100*_retract_angles.y;
yaw_angle =100*_retract_angles.z;
_roll_angle =100*_retract_angles.x;
_pitch_angle=100*_retract_angles.y;
_yaw_angle =100*_retract_angles.z;
break;
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL:
roll_angle =100*_neutral_angles.x;
pitch_angle=100*_neutral_angles.y;
yaw_angle =100*_neutral_angles.z;
_roll_angle =100*_neutral_angles.x;
_pitch_angle=100*_neutral_angles.y;
_yaw_angle =100*_neutral_angles.z;
break;
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
{
aux_vec.x = _mavlink_angles.x;
@ -78,46 +83,40 @@ void AP_Mount::update_mount_position()
//rotate vector
targ = m*aux_vec;
// TODO The next three lines are probably not correct yet
roll_angle = _stab_roll? degrees(atan2( targ.y,targ.z))*100:_mavlink_angles.y; //roll
pitch_angle = _stab_pitch?degrees(atan2(-targ.x,targ.z))*100:_neutral_angles.x; //pitch
yaw_angle = _stab_yaw? degrees(atan2(-targ.x,targ.y))*100:_neutral_angles.z; //yaw
_roll_angle = _stab_roll? degrees(atan2( targ.y,targ.z))*100:_mavlink_angles.y; //roll
_pitch_angle = _stab_pitch?degrees(atan2(-targ.x,targ.z))*100:_neutral_angles.x; //pitch
_yaw_angle = _stab_yaw? degrees(atan2(-targ.x,targ.y))*100:_neutral_angles.z; //yaw
break;
}
case MAV_MOUNT_MODE_RC_TARGETING: // radio manual control
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING:
{
// TODO It does work, but maybe is a good idea to replace this simplified implementation with a proper one
if (_ahrs)
{
roll_angle = -_ahrs->roll_sensor;
pitch_angle = -_ahrs->pitch_sensor;
yaw_angle = -_ahrs->yaw_sensor;
}
G_RC_AUX(k_mount_roll)->rc_input(&_roll_control_angle, _roll_angle);
G_RC_AUX(k_mount_pitch)->rc_input(&_pitch_control_angle, _pitch_angle);
G_RC_AUX(k_mount_yaw)->rc_input(&_yaw_control_angle, _yaw_angle);
if (_ahrs){
calculate();
} else {
if (g_rc_function[RC_Channel_aux::k_mount_roll])
roll_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_roll]);
_roll_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_roll]);
if (g_rc_function[RC_Channel_aux::k_mount_pitch])
pitch_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_pitch]);
_pitch_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_pitch]);
if (g_rc_function[RC_Channel_aux::k_mount_yaw])
yaw_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_yaw]);
_yaw_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_yaw]);
}
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
{
if(_gps->fix)
{
calc_GPS_target_vector(&_target_GPS_location);
if(_gps->fix){
calc_GPS_target_angle(&_target_GPS_location);
}
if (_ahrs){
calculate();
}
m = _ahrs->get_dcm_matrix();
m.transpose();
targ = m*_GPS_vector;
/* disable stabilization for now, this will help debug */
_stab_roll = 0;_stab_pitch=0;_stab_yaw=0;
/**/
// TODO The next three lines are probably not correct yet
roll_angle = _stab_roll? degrees(atan2( targ.y,targ.z))*100:_GPS_vector.y; //roll
pitch_angle = _stab_pitch?degrees(atan2(-targ.x,targ.z))*100:0; //pitch
yaw_angle = _stab_yaw? degrees(atan2(-targ.x,targ.y))*100:degrees(atan2(-_GPS_vector.x,_GPS_vector.y))*100; //yaw
break;
}
default:
@ -126,10 +125,15 @@ void AP_Mount::update_mount_position()
}
// write the results to the servos
/*
G_RC_AUX(k_mount_roll)->angle_out(_roll_angle);
G_RC_AUX(k_mount_pitch)->angle_out(_pitch_angle);
G_RC_AUX(k_mount_yaw)->angle_out(_yaw_angle);
*/
// Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic
G_RC_AUX(k_mount_roll)->closest_limit(roll_angle/10);
G_RC_AUX(k_mount_pitch)->closest_limit(pitch_angle/10);
G_RC_AUX(k_mount_yaw)->closest_limit(yaw_angle/10);
G_RC_AUX(k_mount_roll)->closest_limit(_roll_angle/10);
G_RC_AUX(k_mount_pitch)->closest_limit(_pitch_angle/10);
G_RC_AUX(k_mount_yaw)->closest_limit(_yaw_angle/10);
}
void AP_Mount::set_mode(enum MAV_MOUNT_MODE mode)
@ -210,9 +214,9 @@ void AP_Mount::status_msg(mavlink_message_t *msg)
case MAV_MOUNT_MODE_NEUTRAL: // neutral position (Roll,Pitch,Yaw) from EEPROM
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
case MAV_MOUNT_MODE_RC_TARGETING: // neutral position and start RC Roll,Pitch,Yaw control with stabilization
packet.pointing_b = roll_angle; ///< degrees*100
packet.pointing_a = pitch_angle; ///< degrees*100
packet.pointing_c = yaw_angle; ///< degrees*100
packet.pointing_b = _roll_angle; ///< degrees*100
packet.pointing_a = _pitch_angle; ///< degrees*100
packet.pointing_c = _yaw_angle; ///< degrees*100
break;
case MAV_MOUNT_MODE_GPS_POINT: // neutral position and start to point to Lat,Lon,Alt
packet.pointing_a = _target_GPS_location.lat; ///< latitude
@ -242,12 +246,20 @@ void AP_Mount::control_cmd()
// TODO get the information out of the mission command and use it
}
void AP_Mount::calc_GPS_target_vector(struct Location *target)
void
AP_Mount::calc_GPS_target_angle(struct Location *target)
{
_GPS_vector.x = (target->lng-_gps->longitude) * cos((_gps->latitude+target->lat)/2)*.01113195;
_GPS_vector.y = (target->lat-_gps->latitude)*.01113195;
_GPS_vector.z = (_gps->altitude-target->alt);
float _GPS_vector_x = (target->lng-_current_loc->lng)*cos(ToRad((_current_loc->lat+target->lat)/(t7*2.0)))*.01113195;
float _GPS_vector_y = (target->lat-_current_loc->lat)*.01113195;
float _GPS_vector_z = (target->alt-_current_loc->alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter).
float target_distance = 100.0*sqrt(_GPS_vector_x*_GPS_vector_x + _GPS_vector_y*_GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters.
_roll_control_angle = 0;
_pitch_control_angle = atan2(_GPS_vector_z, target_distance);
_yaw_control_angle = atan2(_GPS_vector_x,_GPS_vector_y);
// Converts +/- 180 into 0-360.
if(_yaw_control_angle<0){
_yaw_control_angle += 2*M_PI;
}
}
void
@ -268,6 +280,19 @@ AP_Mount::update_mount_type()
}
}
void
AP_Mount::calculate()
{
m = _ahrs->get_dcm_matrix();
m.transpose();
cam.from_euler(_roll_control_angle, _pitch_control_angle, _yaw_control_angle);
gimbal_target = m * cam;
gimbal_target.to_euler(&_roll, &_pitch, &_yaw);
_roll_angle = degrees(_roll)*100;
_pitch_angle = degrees(_pitch)*100;
_yaw_angle = degrees(_yaw)*100;
}
// This function is needed to let the HIL code compile
long
AP_Mount::rc_map(RC_Channel_aux* rc_ch)
@ -275,3 +300,34 @@ AP_Mount::rc_map(RC_Channel_aux* rc_ch)
return (rc_ch->radio_in - rc_ch->radio_min) * (rc_ch->angle_max - rc_ch->angle_min) / (rc_ch->radio_max - rc_ch->radio_min) + rc_ch->angle_min;
}
// For testing and development. Called in the medium loop.
void
AP_Mount::debug_output()
{ Serial3.print("current - ");
Serial3.print("lat ");
Serial3.print(_current_loc->lat);
Serial3.print(",lon ");
Serial3.print(_current_loc->lng);
Serial3.print(",alt ");
Serial3.println(_current_loc->alt);
Serial3.print("gps - ");
Serial3.print("lat ");
Serial3.print(_gps->latitude);
Serial3.print(",lon ");
Serial3.print(_gps->longitude);
Serial3.print(",alt ");
Serial3.print(_gps->altitude);
Serial3.println();
Serial3.print("target - ");
Serial3.print("lat ");
Serial3.print(_target_GPS_location.lat);
Serial3.print(",lon ");
Serial3.print(_target_GPS_location.lng);
Serial3.print(",alt ");
Serial3.print(_target_GPS_location.alt);
Serial3.print(" hdg to targ ");
Serial3.print(degrees(_yaw_control_angle));
Serial3.println();
}

View File

@ -6,6 +6,7 @@
* Author: Joe Holdsworth; *
* Ritchie Wilson; *
* Amilcar Lucas; *
* Gregory Fletcher; *
* *
* Purpose: Move a 2 or 3 axis mount attached to vehicle, *
* Used for mount to track targets or stabilise *
@ -31,8 +32,8 @@
class AP_Mount
{
public:
//Constructors
AP_Mount(GPS *gps, AP_AHRS *ahrs);
//Constructor
AP_Mount(const struct Location *current_loc, GPS *&gps, AP_AHRS *ahrs);
//enums
enum MountType{
@ -52,7 +53,7 @@ public:
// should be called periodically
void update_mount_position();
void update_mount_type(); ///< Auto-detect the mount gimbal type depending on the functions assigned to the servos
void debug_output(); ///< For testing and development. Called in the medium loop.
// Accessors
enum MountType get_mount_type();
@ -67,16 +68,28 @@ private:
void set_GPS_target_location(Location targetGPSLocation); ///< used to tell the mount to track GPS location
// internal methods
void calc_GPS_target_vector(struct Location *target);
void calc_GPS_target_angle(struct Location *target);
void calculate();
long rc_map(RC_Channel_aux* rc_ch);
//members
AP_AHRS *_ahrs;
GPS *_gps;
Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs
Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input.
Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos.
AP_AHRS *_ahrs; ///< Rotation matrix from earth to plane.
GPS *&_gps;
const struct Location *_current_loc;
static const float t7 = 10000000.0;
float _roll_control_angle;
float _pitch_control_angle;
float _yaw_control_angle;
float _roll;
float _pitch;
float _yaw;
int roll_angle; ///< degrees*100
int pitch_angle; ///< degrees*100
int yaw_angle; ///< degrees*100
int16_t _roll_angle; ///< degrees*100
int16_t _pitch_angle; ///< degrees*100
int16_t _yaw_angle; ///< degrees*100
uint8_t _stab_roll; ///< (1 = yes, 0 = no)
uint8_t _stab_pitch; ///< (1 = yes, 0 = no)
@ -90,6 +103,5 @@ private:
Vector3i _retract_angles; ///< retracted position for mount, vector.x = roll vector.y = pitch, vector.z=yaw
Vector3i _neutral_angles; ///< neutral position for mount, vector.x = roll vector.y = pitch, vector.z=yaw
Vector3i _mavlink_angles; ///< mavlink position for mount, vector.x = roll vector.y = pitch, vector.z=yaw
Vector3f _GPS_vector; ///< target vector calculated stored in meters
};
#endif

View File

@ -5,13 +5,33 @@
const AP_Param::GroupInfo RC_Channel_aux::var_info[] PROGMEM = {
AP_NESTEDGROUPINFO(RC_Channel, 0),
// @Param: FUNCTION
// @DisplayName: Function assigned to this APM servo output
// @Description: Setting this to Disabled(0) will disable this output, any other value will enable the corresponding function
// @Values: 0:Disabled,1:Manual,2:Flap,3:Flap_auto,4:Aileron,5:flaperon,6:mount_pan,7:mount_tilt,8:mount_roll,9:mount_open,10:camera_trigger,11:release
// @User: Standard
AP_GROUPINFO("FUNCTION", 1, RC_Channel_aux, function),
// @Param: ANGLE_MIN
// @DisplayName: Minimum physical angular position of the object that this servo output controls
// @Description: Minimum physical angular position of the object that this servo output controls, this could be for example a camera pan angle, an aileron angle, etc
// @Units: Degrees
// @Range: -180 180
// @Increment: .01
// @User: Standard
AP_GROUPINFO("ANGLE_MIN", 2, RC_Channel_aux, angle_min),
// @Param: ANGLE_MAX
// @DisplayName: Maximum physical angular position of the object that this servo output controls
// @Description: Maximum physical angular position of the object that this servo output controls, this could be for example a camera pan angle, an aileron angle, etc
// @Units: Degrees
// @Range: -180 180
// @Increment: .01
// @User: Standard
AP_GROUPINFO("ANGLE_MAX", 3, RC_Channel_aux, angle_max),
AP_GROUPEND
};
RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function
// Global pointer array, indexed by a "RC function enum" and points to the RC channel output assigned to that function/operation
RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions];
int16_t
RC_Channel_aux::closest_limit(int16_t angle)
@ -49,6 +69,31 @@ RC_Channel_aux::closest_limit(int16_t angle)
return angle;
}
// Gets the RC and integrates and then compares with the servo out angles to limit control input to servo travel.
// That way the user doesn't get lost. Rotationally.
void
RC_Channel_aux::rc_input(float *control_angle, int16_t angle)
{
if((radio_in < 1480 && angle < angle_max)||(radio_in > 1520 && angle > angle_min)){
*control_angle += ( 1500 - radio_in ) * .0001; // .0001 is the control speed scaler.
}
}
// Takes the desired servo angle(deg) and converts to microSeconds for PWM
// Like this: 45 deg = 2000 us ; -45 deg/1000 us. 1000us/(90*100 deg) = 0.1111111111111
void
RC_Channel_aux::angle_out(int16_t angle)
{
if(angle >= angle_max){
angle = angle_max;
}
if(angle <= angle_min){
angle = angle_min;
}
// Convert the angle*100 to pwm microseconds. 45 deg = 500 us.
radio_out = (/*_reverse * */ angle * 0.1111111) + 1500;
}
// map a function to a servo channel and output it
void
RC_Channel_aux::output_ch(unsigned char ch_nr)

View File

@ -1,8 +1,9 @@
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file RC_Channel_aux.h
/// @brief RC_Channel manager for Channels 5..8, with EEPROM-backed storage of constants.
/// @brief RC_Channel manager for auxiliary channels (5..8), with EEPROM-backed storage of constants.
/// @author Amilcar Lucas
/// @author Gregory Fletcher
#ifndef RC_CHANNEL_AUX_H_
#define RC_CHANNEL_AUX_H_
@ -50,6 +51,10 @@ public:
int16_t closest_limit(int16_t angle); // saturate to the closest angle limit if outside of min max angle interval
void angle_out(int16_t angle);
void rc_input(float *control_angle, int16_t angle);
void output_ch(unsigned char ch_nr); // map a function to a servo channel and output it
static const struct AP_Param::GroupInfo var_info[];