Rover: cleaned up a bunch more plane cruft

removed elevon and flap support
This commit is contained in:
Andrew Tridgell 2012-11-28 08:58:11 +11:00
parent 471ed9429a
commit a16ba57467
8 changed files with 23 additions and 197 deletions

View File

@ -363,13 +363,6 @@ byte control_mode = INITIALISING;
// Used to maintain the state of the previous control switch position // Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch // This is set to -1 when we need to re-read the switch
byte oldSwitchPosition; byte oldSwitchPosition;
// These are trim values used for elevon control
// For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon
static uint16_t elevon1_trim = 1500;
static uint16_t elevon2_trim = 1500;
// These are used in the calculation of elevon1_trim and elevon2_trim
static uint16_t ch1_temp = 1500;
static uint16_t ch2_temp = 1500;
// These are values received from the GCS if the user is using GCS joystick // These are values received from the GCS if the user is using GCS joystick
// control and are substituted for the values coming from the RC radio // control and are substituted for the values coming from the RC radio
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0}; static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
@ -904,10 +897,6 @@ static void slow_loop()
// ------------------------------- // -------------------------------
read_control_switch(); read_control_switch();
// Read Control Surfaces/Mix switches
// ----------------------------------
update_servo_switches();
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8); update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
#if MOUNT == ENABLED #if MOUNT == ENABLED
@ -1045,10 +1034,10 @@ static void update_navigation()
// update_loiter(); // update_loiter();
calc_nav_roll(); calc_nav_roll();
calc_bearing_error(); calc_bearing_error();
if(verify_RTL()) if(verify_RTL()) {
{ g.channel_throttle.servo_out = g.throttle_min.get(); g.channel_throttle.servo_out = g.throttle_min.get();
set_mode(MANUAL); set_mode(MANUAL);
} }
break; break;
} }

View File

@ -37,14 +37,14 @@ public:
k_param_auto_trim, k_param_auto_trim,
k_param_switch_enable, k_param_switch_enable,
k_param_log_bitmask, k_param_log_bitmask,
k_param_mix_mode, k_param_mix_mode, // unused
k_param_reverse_elevons, k_param_reverse_elevons, // unused
k_param_reverse_ch1_elevon, k_param_reverse_ch1_elevon, // unused
k_param_reverse_ch2_elevon, k_param_reverse_ch2_elevon, // unused
k_param_flap_1_percent, k_param_flap_1_percent, // unused
k_param_flap_1_speed, k_param_flap_1_speed, // unused
k_param_flap_2_percent, k_param_flap_2_percent, // unused
k_param_flap_2_speed, k_param_flap_2_speed, // unused
k_param_num_resets, k_param_num_resets,
k_param_log_last_filenumber, // *** Deprecated - remove with next eeprom number change k_param_log_last_filenumber, // *** Deprecated - remove with next eeprom number change
k_param_reset_switch_chan, k_param_reset_switch_chan,
@ -303,11 +303,6 @@ public:
// Misc // Misc
// //
AP_Int8 auto_trim; AP_Int8 auto_trim;
AP_Int8 switch_enable;
AP_Int8 mix_mode;
AP_Int8 reverse_elevons;
AP_Int8 reverse_ch1_elevon;
AP_Int8 reverse_ch2_elevon;
AP_Int16 num_resets; AP_Int16 num_resets;
AP_Int16 log_bitmask; AP_Int16 log_bitmask;
AP_Int16 log_last_filenumber; // *** Deprecated - remove with next eeprom number change AP_Int16 log_last_filenumber; // *** Deprecated - remove with next eeprom number change
@ -334,10 +329,6 @@ public:
// 3 = HRLV // 3 = HRLV
#endif #endif
#endif #endif
AP_Int8 flap_1_percent;
AP_Int8 flap_1_speed;
AP_Int8 flap_2_percent;
AP_Int8 flap_2_speed;
// ************ ThermoPilot parameters ************************ // ************ ThermoPilot parameters ************************
// - JLN update // - JLN update

View File

@ -58,7 +58,6 @@ const AP_Param::Info var_info[] PROGMEM = {
GSCALAR(pitch_limit_min, "LIM_PITCH_MIN", PITCH_MIN_CENTIDEGREE), GSCALAR(pitch_limit_min, "LIM_PITCH_MIN", PITCH_MIN_CENTIDEGREE),
GSCALAR(auto_trim, "TRIM_AUTO", AUTO_TRIM), GSCALAR(auto_trim, "TRIM_AUTO", AUTO_TRIM),
GSCALAR(switch_enable, "SWITCH_ENABLE", REVERSE_SWITCH),
GSCALAR(num_resets, "SYS_NUM_RESETS", 0), GSCALAR(num_resets, "SYS_NUM_RESETS", 0),
GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK), GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK),
GSCALAR(log_last_filenumber, "LOG_LASTFILE", 0), GSCALAR(log_last_filenumber, "LOG_LASTFILE", 0),

View File

@ -345,14 +345,6 @@
# define MANUAL_LEVEL DISABLED # define MANUAL_LEVEL DISABLED
#endif #endif
//////////////////////////////////////////////////////////////////////////////
// THROTTLE_REVERSE
//
#ifndef THROTTLE_REVERSE
# define THROTTLE_REVERSE DISABLED
#endif
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// ENABLE_STICK_MIXING // ENABLE_STICK_MIXING
// //
@ -382,13 +374,6 @@
# define GROUND_START_DELAY 0 # define GROUND_START_DELAY 0
#endif #endif
//////////////////////////////////////////////////////////////////////////////
// ENABLE REVERSE_SWITCH
//
#ifndef REVERSE_SWITCH
# define REVERSE_SWITCH ENABLED
#endif
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// MOUNT (ANTENNA OR CAMERA) // MOUNT (ANTENNA OR CAMERA)
// //

View File

@ -121,35 +121,3 @@ if (g.ch7_option == CH7_SAVE_WP){ // set to 1
} }
} }
static void update_servo_switches()
{
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
#if HIL_MODE != HIL_MODE_ATTITUDE // JLN update
if (!g.switch_enable) {
// switches are disabled in EEPROM (see SWITCH_ENABLE option)
// this means the EEPROM control of all channel reversal is enabled
return;
}
// up is reverse
// up is elevon
g.mix_mode = (PINL & 128) ? 1 : 0; // 1 for elevon mode
if (g.mix_mode == 0) {
g.channel_roll.set_reverse((PINE & 128) ? true : false);
g.channel_pitch.set_reverse((PINE & 64) ? true : false);
g.channel_rudder.set_reverse((PINL & 64) ? true : false);
} else {
g.reverse_elevons = (PINE & 128) ? true : false;
g.reverse_ch1_elevon = (PINE & 64) ? true : false;
g.reverse_ch2_elevon = (PINL & 64) ? true : false;
}
#else
g.mix_mode = 0; // 1 for elevon mode // setup for the the Predator MQ9 of AeroSim - JLN update
g.channel_roll.set_reverse(false); // roll reversed
g.channel_pitch.set_reverse(false); // pitch normal
g.channel_rudder.set_reverse(false); // yaw normal
#endif
#endif
}

View File

@ -7,9 +7,6 @@ static byte failsafeCounter = 0; // we wait a second to take over the throttle
static void init_rc_in() static void init_rc_in()
{ {
// set rc reversing
update_servo_switches();
// set rc channel ranges // set rc channel ranges
g.channel_roll.set_angle(SERVO_MAX); g.channel_roll.set_angle(SERVO_MAX);
g.channel_pitch.set_angle(SERVO_MAX); g.channel_pitch.set_angle(SERVO_MAX);
@ -47,13 +44,13 @@ static void init_rc_out()
#if HIL_MODE != HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_ATTITUDE
APM_RC.OutputCh(CH_1, g.channel_roll.radio_trim); // Initialization of servo outputs APM_RC.OutputCh(CH_1, g.channel_roll.radio_trim); // Initialization of servo outputs
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_trim); APM_RC.OutputCh(CH_2, g.channel_pitch.radio_trim);
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_min); APM_RC.OutputCh(CH_3, g.channel_throttle.radio_trim);
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_trim); APM_RC.OutputCh(CH_4, g.channel_rudder.radio_trim);
APM_RC.OutputCh(CH_5, g.rc_5.radio_trim); APM_RC.OutputCh(CH_5, g.rc_5.radio_trim);
APM_RC.OutputCh(CH_6, g.rc_6.radio_trim); APM_RC.OutputCh(CH_6, g.rc_6.radio_trim);
APM_RC.OutputCh(CH_7, g.rc_7.radio_trim); APM_RC.OutputCh(CH_7, g.rc_7.radio_trim);
APM_RC.OutputCh(CH_8, g.rc_8.radio_trim); APM_RC.OutputCh(CH_8, g.rc_8.radio_trim);
#else #else
APM_RC.OutputCh(CH_1, 1500); // Initialization of servo outputs APM_RC.OutputCh(CH_1, 1500); // Initialization of servo outputs
APM_RC.OutputCh(CH_2, 1500); APM_RC.OutputCh(CH_2, 1500);
@ -63,23 +60,15 @@ static void init_rc_out()
APM_RC.OutputCh(CH_5, 1500); APM_RC.OutputCh(CH_5, 1500);
APM_RC.OutputCh(CH_6, 1500); APM_RC.OutputCh(CH_6, 1500);
APM_RC.OutputCh(CH_7, 1500); APM_RC.OutputCh(CH_7, 1500);
APM_RC.OutputCh(CH_8, 2000); APM_RC.OutputCh(CH_8, 2000);
#endif #endif
} }
static void read_radio() static void read_radio()
{ {
ch1_temp = APM_RC.InputCh(CH_ROLL); g.channel_roll.set_pwm(APM_RC.InputCh(CH_ROLL));
ch2_temp = APM_RC.InputCh(CH_PITCH); g.channel_pitch.set_pwm(APM_RC.InputCh(CH_PITCH));
if(g.mix_mode == 0){
g.channel_roll.set_pwm(ch1_temp);
g.channel_pitch.set_pwm(ch2_temp);
}else{
g.channel_roll.set_pwm(BOOL_TO_SIGN(g.reverse_elevons) * (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) - BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500);
g.channel_pitch.set_pwm((BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) + BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500);
}
g.channel_throttle.set_pwm(APM_RC.InputCh(CH_3)); g.channel_throttle.set_pwm(APM_RC.InputCh(CH_3));
g.channel_rudder.set_pwm(APM_RC.InputCh(CH_4)); g.channel_rudder.set_pwm(APM_RC.InputCh(CH_4));
@ -88,11 +77,6 @@ static void read_radio()
g.rc_7.set_pwm(APM_RC.InputCh(CH_7)); g.rc_7.set_pwm(APM_RC.InputCh(CH_7));
g.rc_8.set_pwm(APM_RC.InputCh(CH_8)); g.rc_8.set_pwm(APM_RC.InputCh(CH_8));
// TO DO - go through and patch throttle reverse for RC_Channel library compatibility
#if THROTTLE_REVERSE == 1
g.channel_throttle.radio_in = g.channel_throttle.radio_max + g.channel_throttle.radio_min - g.channel_throttle.radio_in;
#endif
control_failsafe(g.channel_throttle.radio_in); control_failsafe(g.channel_throttle.radio_in);
g.channel_throttle.servo_out = g.channel_throttle.control_in; g.channel_throttle.servo_out = g.channel_throttle.control_in;
@ -162,33 +146,21 @@ static void trim_control_surfaces()
read_radio(); read_radio();
// Store control surface trim values // Store control surface trim values
// --------------------------------- // ---------------------------------
if(g.mix_mode == 0){ if ((g.channel_roll.radio_in > 1400) && (g.channel_pitch.radio_trim > 1400)) {
if ((g.channel_roll.radio_in > 1400) && (g.channel_pitch.radio_trim > 1400)) {
g.channel_roll.radio_trim = g.channel_roll.radio_max + g.channel_roll.radio_min - g.channel_roll.radio_in; g.channel_roll.radio_trim = g.channel_roll.radio_max + g.channel_roll.radio_min - g.channel_roll.radio_in;
g.channel_pitch.radio_trim = g.channel_pitch.radio_max + g.channel_pitch.radio_min - g.channel_pitch.radio_in; g.channel_pitch.radio_trim = g.channel_pitch.radio_max + g.channel_pitch.radio_min - g.channel_pitch.radio_in;
g.channel_rudder.radio_trim = g.channel_rudder.radio_max + g.channel_rudder.radio_min - g.channel_rudder.radio_in; g.channel_rudder.radio_trim = g.channel_rudder.radio_max + g.channel_rudder.radio_min - g.channel_rudder.radio_in;
RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_aileron); RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_aileron);
} else { } else {
g.channel_roll.radio_trim = 1500; // case of HIL test without receiver active g.channel_roll.radio_trim = 1500; // case of HIL test without receiver active
g.channel_pitch.radio_trim = 1500; g.channel_pitch.radio_trim = 1500;
g.channel_rudder.radio_trim = 1500; g.channel_rudder.radio_trim = 1500;
g.channel_throttle.radio_trim = 1000; g.channel_throttle.radio_trim = 1000;
} }
}else{
elevon1_trim = ch1_temp;
elevon2_trim = ch2_temp;
//Recompute values here using new values for elevon1_trim and elevon2_trim
//We cannot use radio_in[CH_ROLL] and radio_in[CH_PITCH] values from read_radio() because the elevon trim values have changed
uint16_t center = 1500;
g.channel_roll.radio_trim = center;
g.channel_pitch.radio_trim = center;
}
// save to eeprom // save to eeprom
g.channel_roll.save_eeprom(); g.channel_roll.save_eeprom();
g.channel_pitch.save_eeprom(); g.channel_pitch.save_eeprom();
//g.channel_throttle.save_eeprom();
g.channel_rudder.save_eeprom(); g.channel_rudder.save_eeprom();
} }
@ -197,35 +169,5 @@ static void trim_radio()
for (int y = 0; y < 30; y++) { for (int y = 0; y < 30; y++) {
read_radio(); read_radio();
} }
trim_control_surfaces();
// Store the trim values
// ---------------------
if(g.mix_mode == 0){
if ((g.channel_roll.radio_in > 1400) && (g.channel_pitch.radio_trim > 1400)) {
g.channel_roll.radio_trim = g.channel_roll.radio_in;
g.channel_pitch.radio_trim = g.channel_pitch.radio_in;
//g.channel_throttle.radio_trim = g.channel_throttle.radio_in;
g.channel_rudder.radio_trim = g.channel_rudder.radio_in;
RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_aileron);
} else {
g.channel_roll.radio_trim = 1500; // case of HIL test without receiver active
g.channel_pitch.radio_trim = 1500;
g.channel_rudder.radio_trim = 1500;
g.channel_throttle.radio_trim = 1000;
}
} else {
elevon1_trim = ch1_temp;
elevon2_trim = ch2_temp;
uint16_t center = 1500;
g.channel_roll.radio_trim = center;
g.channel_pitch.radio_trim = center;
g.channel_rudder.radio_trim = g.channel_rudder.radio_in;
}
// save to eeprom
g.channel_roll.save_eeprom();
g.channel_pitch.save_eeprom();
//g.channel_throttle.save_eeprom();
g.channel_rudder.save_eeprom();
} }

View File

@ -297,9 +297,6 @@ static void init_ardupilot()
#endif #endif
#endif // CLI_ENABLED #endif // CLI_ENABLED
// read in the flight switches
update_servo_switches();
startup_ground(); startup_ground();
#if LITE == DISABLED #if LITE == DISABLED

View File

@ -24,9 +24,6 @@ static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv); static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv); static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv);
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
static int8_t test_dipswitches(uint8_t argc, const Menu::arg *argv);
#endif
static int8_t test_logging(uint8_t argc, const Menu::arg *argv); static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
// Creates a constant array of structs representing menu options // Creates a constant array of structs representing menu options
@ -44,9 +41,6 @@ static const struct Menu::command test_menu_commands[] PROGMEM = {
{"xbee", test_xbee}, {"xbee", test_xbee},
{"eedump", test_eedump}, {"eedump", test_eedump},
{"modeswitch", test_modeswitch}, {"modeswitch", test_modeswitch},
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
{"dipswitches", test_dipswitches},
#endif
// Tests below here are for hardware sensors only present // Tests below here are for hardware sensors only present
// when real sensors are attached or they are emulated // when real sensors are attached or they are emulated
@ -165,11 +159,6 @@ test_radio(uint8_t argc, const Menu::arg *argv)
print_hit_enter(); print_hit_enter();
delay(1000); delay(1000);
#if THROTTLE_REVERSE == 1
cliSerial->printf_P(PSTR("Throttle is reversed in config: \n"));
delay(1000);
#endif
// read the radio to set trims // read the radio to set trims
// --------------------------- // ---------------------------
trim_radio(); trim_radio();
@ -177,7 +166,6 @@ test_radio(uint8_t argc, const Menu::arg *argv)
while(1){ while(1){
delay(20); delay(20);
read_radio(); read_radio();
update_servo_switches();
g.channel_roll.calc_pwm(); g.channel_roll.calc_pwm();
g.channel_pitch.calc_pwm(); g.channel_pitch.calc_pwm();
@ -417,39 +405,6 @@ test_logging(uint8_t argc, const Menu::arg *argv)
return 0; return 0;
} }
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
static int8_t
test_dipswitches(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
if (!g.switch_enable) {
cliSerial->println_P(PSTR("dip switches disabled, using EEPROM"));
}
while(1){
delay(100);
update_servo_switches();
if (g.mix_mode == 0) {
cliSerial->printf_P(PSTR("Mix:standard \trev roll:%d, rev pitch:%d, rev rudder:%d\n"),
(int)g.channel_roll.get_reverse(),
(int)g.channel_pitch.get_reverse(),
(int)g.channel_rudder.get_reverse());
} else {
cliSerial->printf_P(PSTR("Mix:elevons \trev elev:%d, rev ch1:%d, rev ch2:%d\n"),
(int)g.reverse_elevons,
(int)g.reverse_ch1_elevon,
(int)g.reverse_ch2_elevon);
}
if(cliSerial->available() > 0){
return (0);
}
}
}
#endif // CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
//------------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------------
// tests in this section are for real sensors or sensors that have been simulated // tests in this section are for real sensors or sensors that have been simulated