AP_Math: better polygon algorithm

this one seems to do better with single precision floating point
This commit is contained in:
Andrew Tridgell 2011-12-15 23:33:28 +11:00
parent dc20d89375
commit 9b6bab8904
3 changed files with 17 additions and 49 deletions

View File

@ -33,12 +33,14 @@ static const struct {
Vector2f point;
bool outside;
} test_points[] = {
{ Vector2f(-26.639887, 151.822281), true },
{ Vector2f(-26.639887, 151.822000), true },
{ Vector2f(-26.641870, 151.870926), false },
{ Vector2f(-35.0, 149.0), true },
{ Vector2f(0, 0), true },
{ Vector2f(-26.576815, 151.840825), false },
{ Vector2f(-26.577406, 151.840586), true },
{ Vector2f(-26.643563, 151.830344), true },
{ Vector2f(-26.643565, 151.831354), false },
};
#define ARRAY_LENGTH(x) (sizeof((x))/sizeof((x)[0]))
@ -67,7 +69,7 @@ void setup(void)
for (i=0; i<ARRAY_LENGTH(test_points); i++) {
bool result;
result = Polygon_outside(&test_points[i].point, OBC_boundary, ARRAY_LENGTH(OBC_boundary));
result = Polygon_outside(test_points[i].point, OBC_boundary, ARRAY_LENGTH(OBC_boundary));
Serial.printf_P(PSTR("%10f,%10f %s %s\n"),
test_points[i].point.x, test_points[i].point.y,
result?"OUTSIDE":"INSIDE ",
@ -83,7 +85,7 @@ void setup(void)
for (count=0; count<1000; count++) {
for (i=0; i<ARRAY_LENGTH(test_points); i++) {
bool result;
result = Polygon_outside(&test_points[i].point, OBC_boundary, ARRAY_LENGTH(OBC_boundary));
result = Polygon_outside(test_points[i].point, OBC_boundary, ARRAY_LENGTH(OBC_boundary));
if (result != test_points[i].outside) {
all_passed = false;
}

View File

@ -20,61 +20,27 @@
#include "AP_Math.h"
/*
NOTE: the winding number crossing algorithm is based on
the code from
http://www.softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm
which has the following copyright notice:
// Copyright 2001, softSurfer (www.softsurfer.com)
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
The point in polygon algorithm is based on:
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
*/
/* isLeft(): tests if a point is Left|On|Right of an infinite line.
Input: three points P0, P1, and P2
Return: >0 for P2 left of the line through P0 and P1
=0 for P2 on the line
<0 for P2 right of the line
See: the January 2001 Algorithm "Area of 2D and 3D Triangles and Polygons"
*/
static int isLeft(const Vector2f *P0, const Vector2f *P1, const Vector2f *P2)
{
float ret = ( (P1->x - P0->x) * (P2->y - P0->y)
- (P2->x - P0->x) * (P1->y - P0->y) );
if (ret > 0) return 1;
if (ret < 0) return -1;
return 0;
}
/*
Polygon_outside(): winding number test for a point in a polygon
Polygon_outside(): test for a point in a polygon
Input: P = a point,
V[] = vertex points of a polygon V[n+1] with V[n]=V[0]
Return: true if P is outside the polygon
*/
bool Polygon_outside(const Vector2f *P, const Vector2f *V, unsigned n)
bool Polygon_outside(const Vector2f &P, const Vector2f *V, unsigned n)
{
int wn = 0; // the winding number counter
// loop through all edges of the polygon
for (unsigned i=0; i<n; i++) { // edge from V[i] to V[i+1]
if (V[i].y <= P->y) { // start y <= P.y
if (V[i+1].y > P->y) // an upward crossing
if (isLeft(&V[i], &V[i+1], P) > 0) // P left of edge
++wn; // have a valid up intersect
unsigned i, j;
bool outside = true;
for (i = 0, j = n-1; i < n; j = i++) {
if ( ((V[i].y > P.y) != (V[j].y > P.y)) &&
(P.x < (V[j].x - V[i].x) * (P.y - V[i].y) / (V[j].y - V[i].y) + V[i].x) )
outside = !outside;
}
else { // start y > P.y (no test needed)
if (V[i+1].y <= P->y) // a downward crossing
if (isLeft(&V[i], &V[i+1], P) < 0) // P right of edge
--wn; // have a valid down intersect
}
}
return wn == 0;
return outside;
}
/*

View File

@ -17,6 +17,6 @@
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
bool Polygon_outside(const Vector2f *P, const Vector2f *V, unsigned n);
bool Polygon_outside(const Vector2f &P, const Vector2f *V, unsigned n);
bool Polygon_complete(const Vector2f *V, unsigned n);